485
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Neuroprotective effects of inhibitors of Acid-Sensing ion channels (ASICs) in optic nerve crush model in rodents

ORCID Icon, , , &
Pages 84-95 | Received 29 Mar 2017, Accepted 14 Sep 2017, Published online: 07 Nov 2017

References

  • Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82(11):844–51.
  • Steinsapir KD, Goldberg RA. Traumatic optic neuropathy. Surv Ophthalmol. 1994;38(6):487–518. doi:10.1016/0039-6257(94)90145-7.
  • Stys PK, Lopachin RM. Mechanisms of calcium and sodium fluxes in anoxic myelinated central nervous system axons. Neuroscience. 1998;82:21–32. doi:10.1016/S0306-4522(97)00230-3.
  • Waxman SG. Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nat Clin Pract Neurol. 2008;4:159–69. doi:10.1038/ncpneuro0735.
  • Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nature. 1997;386:173–77. doi:10.1038/386173a0.
  • Waldmann R, Lazdunski M. H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol. 1998;8:418–24. doi:10.1016/S0959-4388(98)80070-6.
  • Waldmann R, Champigny G, Lingueglia E, De Weille JR, Heurteaux C, Lazdunski M. H(+)-gated cation channels. Ann N Y Acad Sci. 1999;868:67–76. doi:10.1111/j.1749-6632.1999.tb11274.x.
  • Krishtal O. The ASICs: signaling molecules? Modulators? Trends Neurosci. 2003;26:477–83. doi:10.1016/S0166-2236(03)00210-8.
  • Alvarez De La Rosa D, Zhang P, Shao D, White F, Canessa CM. Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc Natl Acad Sci U S A. 2002;99:2326–31. doi:10.1073/pnas.042688199.
  • Sherwood TW, Lee KG, Gormley MG, Askwith CC. Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci Off J Soc Neurosci. 2011;31:9723–34. doi:10.1523/JNEUROSCI.1665-11.2011.
  • Yermolaieva O, Leonard AS, Schnizler MK, Abboud FM, Welsh MJ. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci U S A. 2004;101:6752–57. doi:10.1073/pnas.0308636100.
  • Zha X, Wemmie JA, Green SH, Welsh MJ. Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines. Proc Natl Acad Sci U S A. 2006;103:16556–61. doi:10.1073/pnas.0608018103.
  • Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ et al: Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687–98. doi:10.1016/j.cell.2004.08.026.
  • Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA et al The mammalian sodium channel BNC1 is required for normal touch sensation. Nature. 2000;407:1007–11. doi:10.1038/35039512.
  • Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron. 2001;32:1071–83. doi:10.1016/S0896-6273(01)00547-5.
  • Bevan S, Yeats J. Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurones. J Physiol. 1991;433:145–61. doi:10.1113/jphysiol.1991.sp018419.
  • Krishtal OA, Pidoplichko VI. Receptor for protons in the membrane of sensory neurons. Brain Res. 1981;214:150–54. doi:10.1016/0006-8993(81)90446-7.
  • Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S. Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest. 2002;110:1185–90. doi:10.1172/JCI0215709.
  • Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH, Jr. et al: The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron. 2002;34:463–77. doi:10.1016/S0896-6273(02)00661-X.
  • Xiong Z-G, Chu X-P, Simon RP. Ca2+ -permeable acid-sensing ion channels and ischemic brain injury. J Membr Biol. 2006;209:59–68. doi:10.1007/s00232-005-0840-x.
  • Pignataro G, Simon RP, Xiong Z-G. Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischemia. Brain J Neurol. 2007;130:151–58. doi:10.1093/brain/awl325.
  • Vergo S, Craner MJ, Etzensperger R, Attfield K, Friese MA, Newcombe J, Esiri M, Fugger L. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain J Neurol. 2011;134:571–84. doi:10.1093/brain/awq337.
  • Arias RL, Sung ML, Vasylyev D, Zhang MY, Albinson K, Kubek K, Kagan N, Beyer C, Lin Q, Dwyer JM et al. Amiloride is neuroprotective in an MPTP model of Parkinson’s disease. Neurobiol Dis. 2008;31:334–41. doi:10.1016/j.nbd.2008.05.008.
  • Luszczki JJ, Sawicka KM, Kozinska J, Dudra-Jastrzebska M, Czuczwar SJ. Amiloride enhances the anticonvulsant action of various antiepileptic drugs in the mouse maximal electroshock seizure model. J Neural Transm Vienna Austria. 1996;2009(116):57–66.
  • Biagini G, Babinski K, Avoli M, Marcinkiewicz M, Séguéla P. Regional and subunit-specific downregulation of acid-sensing ion channels in the pilocarpine model of epilepsy. Neurobiol Dis. 2001;8:45–58. doi:10.1006/nbdi.2000.0331.
  • Ziemann AE, Schnizler MK, Albert GW, Severson MA, Howard MA, 3rd, Welsh MJ, Wemmie JA. Seizure termination by acidosis depends on ASIC1a. Nat Neurosci. 2008;11:816–22. doi:10.1038/nn.2132.
  • Wong HK, Bauer PO, Kurosawa M, Goswami A, Washizu C, Machida Y, Tosaki A, Yamada M, Knopfel T, Nakamura T et al. Blocking acid-sensing ion channel 1 alleviates Huntington’s disease pathology via an ubiquitin-proteasome system-dependent mechanism. Hum Mol Genet. 2008;17:3223–35. doi:10.1093/hmg/ddn218.
  • Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, Vincent A, Fugger L Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med. 2007;13:1483–89. doi:10.1038/nm1668.
  • Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, Xu TL Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron. 2005;48:635–46. doi:10.1016/j.neuron.2005.10.011.
  • Tan J, Ye X, Xu Y, Wang H, Sheng M, Wang F. Acid-sensing ion channel 1a is involved in retinal ganglion cell death induced by hypoxia. Mol Vis. 2011;17:3300–08.
  • Lilley S, LeTissier P, Robbins J. The discovery and characterization of a proton-gated sodium current in rat retinal ganglion cells. J Neurosci Off J Soc Neurosci. 2004;24:1013–22. doi:10.1523/JNEUROSCI.3191-03.2004.
  • Ettaiche M, Deval E, Pagnotta S, Lazdunski M, Lingueglia E. Acid-sensing ion channel 3 in retinal function and survival. Invest Ophthalmol Vis Sci. 2009;50:2417–26. doi:10.1167/iovs.08-3028.
  • Berry M, Carlile J, Hunter A. Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J Neurocytol. 1996;25:147–70. doi:10.1007/BF02284793.
  • Kurimoto T, Ishii M, Tagami Y, Nishimura M, Miyoshi T, Tsukamoto Y, Mimura O. Xylazine promotes axonal regeneration in the crushed optic nerve of adult rats. Neuroreport. 2006;17:1525–29. doi:10.1097/01.wnr.0000234749.80936.54.
  • Panagis L, Thanos S, Fischer D, Dermon CR. Unilateral optic nerve crush induces bilateral retinal glial cell proliferation. Eur J Neurosci. 2005;21:2305–09. doi:10.1111/j.1460-9568.2005.04046.x.
  • Jiang SM, Zeng LP, Zeng JH, Tang L, Chen XM, Wei X. beta-III-Tubulin: a reliable marker for retinal ganglion cell labeling in experimental models of glaucoma. Int J Ophthalmol. 2015;8:643–52.
  • Cheng L, Sapieha P, Kittlerová P, Hauswirth WW, Polo AD. TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J Neurosci. 2002;22:3977–86.
  • Ugawa S, Yamamoto T, Ueda T, Ishida Y, Inagaki A, Nishigaki M, Shimada. Amiloride-insensitive currents of the acid-sensing ion channel-2a (ASIC2a)/ASIC2b heteromeric sour-taste receptor channel. J Neurosci. 2003;23:3616–22.
  • Dibas A, Yang M-H, He S, Bobich J, Yorio T. Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. Mol Vis. 2008;14:1770–83.
  • Bull ND, Johnson TV, Welsapar G, DeKorver NW, Tomarev SI, Martin KR. Use of an adult rat retinal explant model for screening of potential retinal ganglion cell neuroprotective therapies. Invest Ophthalmol Vis Sci. 2011;52:3309–20. doi:10.1167/iovs.10-6873.
  • Johnson TV, Oglesby EN, Steinhart MR, Cone-Kimball E, Jefferys J, Quigley HA. Time-lapse retinal ganglion cell dendritic field degeneration imaged in organotypic retinal explant culture. Invest Ophthalmol Vis Sci. 2016 Jan 1;57(1):253–64. doi:10.1167/iovs.15-17769.
  • Fernandez-Bueno I, Fernández-Sánchez L, Gayoso MJ, García-Gutierrez MT, Pastor JC, Cuenca N. Time course modifications in organotypic culture of human neuroretina. Exp Eye Res. 2012 Nov;104:26–38. Epub 2012 Sep 26. doi:10.1016/j.exer.2012.08.012.
  • Dibas A, Rezazadeh M, Vassan R, Mia A, Yorio T. Mechanism of vasopressin-induced increase in intracellular calcium in LLC-PK1 cells. Am J Physiol. 1997;272:C810–C817.
  • Barres BA, Silverstein BE, Corey DP, Chun LL. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron. 1988;1:791–803. doi:10.1016/0896-6273(88)90127-4.
  • Mueller II BH, Park Y, Ma H-Y, Dibas A, Ellis DZ, Clark AF, et al. Sigma-1 receptor stimulation protects retinal ganglion cells from ischemia-like insult through the activation of extracellular-signal-regulated kinases 1/2. Exp Eye Res. 2014;128:156–69. doi:10.1016/j.exer.2014.10.007.
  • Pandey AK, Hazari PP, Patnaik R, Mishra AK. The role of ASIC1a in neuroprotection elicited by quercetin in focal cerebral ischemia. Brain Res. 2011;1383:289–99. doi:10.1016/j.brainres.2011.01.085.
  • Xiong Z-G, Pignataro G, Li M, Chang S, Simon RP. Acid-Sensing Ion Channels (ASICs) as pharmacological targets for neurodegenerative diseases. Curr Opin Pharmacol. 2008;8:25–32. doi:10.1016/j.coph.2007.09.001.
  • Wang YC, Li WZ, Wu Y, Yin YY, Dong LY, Chen ZW, Wu WN: Acid-sensing ion channel 1a contributes to the effect of extracellular acidosis on NLRP1 inflammasome activation in cortical neurons. J Neuroinflammation. 2015, 12:246. doi:10.1186/s12974-015-0465-7.
  • Khorchid A, Ikura M. How calpain is activated by calcium. Nat Struct Mol Biol. 2002;9:239–41. doi:10.1038/nsb0402-239.
  • Inserte J, Barba I, Hernando V, Garcia-Dorado D. Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in post conditioned myocardium. Cardiovasc Res. 2009;81:116–22. doi:10.1093/cvr/cvn260.
  • Aki T, Yoshida K, Fujimiya T. Phosphoinositide 3-kinase accelerates calpain-dependent proteolysis of fodrin during hypoxic cell death. J Biochem (Tokyo). 2002;132:921–26. doi:10.1093/oxfordjournals.jbchem.a003305.
  • De Hoz R, Rojas B, Ramirez AI, Salazar JJ, Gallego BI, Trivino A, Ramirez JM. Retinal Macroglial Responses in Health and Disease. Biomed Res Int. 2016;2016:2954721. doi:10.1155/2016/2954721.
  • Gallego BI, Salazar JJ, De Hoz R, Rojas B, Ramírez AI, Salinas-Navarro M, Ortín-Martínez A, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas-Perez MP, et al. IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation. 2012;9(1):92. doi:10.1186/1742-2094-9-92.
  • Oh TH, Markelonis GJ, Von Visger JR, Baik B, Shipley MT. Acidic pH rapidly increases immunoreactivity of glial fibrillary acidic protein in cultured astrocytes. Glia. 1995;13:319–22. doi:10.1002/(ISSN)1098-1136.
  • Schuettauf F, Naskar R, Vorwerk CK, Zurakowski D, Dreyer EB. Ganglion cell loss after optic nerve crush mediated through AMPA-kainate and NMDA receptors. Invest Ophthalmol Vis Sci. 2000 Dec;41(13):4313–16.
  • Nishikawa Y, Oku H, Morishita S, Horie T, Kida T, Mimura M, Fukumoto M, Kojima S, Ikeda T. Negative impact of AQP-4 channel inhibition on survival of retinal ganglion cells and glutamate metabolism after crushing optic nerve. Exp Eye Res. 2016 May;146:118–27. doi:10.1016/j.exer.2015.12.012.
  • Mawrin C, Pap T, Pallas M, Dietzmann K, Behrens-Baumann W, Vorwerk CK. Changes of retinal glutamate transporter GLT-1 mRNA levels following optic nerve damage. Mol Vis. 2003 Jan 13;9:10–13.
  • Gorovits R, Avidan N, Avisar N, Shaked I, Vardimon L Glutamine synthetase protects against neuronal degeneration in injured retinal tissue. Proc Natl Acad Sci USA Vol. 94, pp. 7024–29, June 1997. 10.1073/pnas.94.13.7024
  • Shaked I, Ben-Dror I, Vardimon L. Glutamine synthetase enhances the clearance of extracellular glutamate by the neural retina. J Neurochem. 2002;83:574–80. doi:10.1046/j.1471-4159.2002.01168.x.
  • Wang YC, Li WZ, Wu Y, Yin YY, Dong LY, Chen ZW, Wu WN. Acid-sensing ion channel 1a contributes to the effect of extracellular acidosis on NLRP1 inflammasome activation in cortical neurons. J Neuroinflammation. 2015 Dec 30;12:246. doi:10.1186/s12974-015-0465-7.
  • Miyake T, Nishiwaki A, Yasukawa T, Ugawa S, Shimada S, Ogura Y. Possible implications of acid-sensing ion channels in ischemia-induced retinal injury in rats. Jap J Ophthalmol. 2013;57:120–25. doi:10.1007/s10384-012-0213-9.
  • Vergo S, Craner MJ, Etzensperger R, Attfield K, Friese MA, Newcombe J, Esiri M, Fugger L. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain. 2011;134:571–84. doi:10.1093/brain/awq337.
  • Arun T, Tomassini V, Sbardella E, de Ruiter MB, Matthews L, Leite MI, Gelineau-Morel R, Cavey A, Vergo S, Craner M et al. Targeting ASIC1 in primary progressive multiple sclerosis: evidence of neuroprotection with amiloride. Brain. 2013;136:106–15. doi:10.1093/brain/aws325.
  • Bernardinelli L, Murgia SB, Bitti PP, Foco L, Ferrai R, Musu L, Prokopenko I, Pastorino R, Saddi V, Ticca A, et al. Association between the ACCN1 gene and multiple sclerosis in Central East. PLoS One. 2007;5:e480. doi:10.1371/journal.pone.0000480.
  • Chen CC, England S, Akopian AN, Wood JN. S sensory neuron-specific, proton ion channel. Proc Natl Acad Sci. 1998;95:10240–45. doi:10.1073/pnas.95.17.10240.
  • Bassler E, Ngo-Anh TJ, Geisler HS, Ruppersburg JP, Grunder S. Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J Biol Chem. 2001;276:33782–87. doi:10.1074/jbc.M104030200.
  • Russo R, Adornetto A, Cavaliere F, Varano GP, Rusciano D, Morrone LA, Corasaniti MT, Bagetta G, Nucci C. Intravitreal injection of forskolin, homotaurine, and L-carnosine affords neuroprotection to retinal ganglion cells following retinal ischemic injury. Mol Vis. 2015;21:718–29.
  • Ryu M, Yasuda M, Shi D, Shanab AY, Watanabe R, Himori N, Omodaka K, Yokoyama Y, Takano J, Saido T, et al. Critical role of calpain in axonal damge-induced retinal ganglion cell death. J Neurosci Res. 2012;90:802–15. doi:10.1002/jnr.22800.
  • Russo R, Berliocchi L, Adornetto A, Varano GP, Cavaliere F, Nucci C, Rotiroti D, Morrone LA, Bagetta G, Corasaniti MT. Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis. 2011;2:2144. doi:10.1038/cddis.2011.29.
  • Sahara S, Yamashima T. Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Biochem. Biophys Res Commun. 2010;393:806–11. doi:10.1016/j.bbrc.2010.02.087.
  • Huang W, Fileta J, Rawe I, Qu J, Grosskreutz CL. Calpain activation in experimental glaucoma. Calpain activation in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010;51(6):3049–54. doi:10.1167/iovs.09-4364.
  • Oka T, Tamada Y, Nakajima E, Shearer TR, Azuma M. Presence of calpain-induced proteolysis in retinal degeneration and dysfunction in a rat model of acute ocular hypertension. J Neurosci Res. 2006;83(7):1342–51. doi:10.1002/(ISSN)1097-4547.
  • McKernan DP, Guerin MB, O’Brien CJ, Cotter TG. A key role for calpains in retinal ganglion cell death. Invest Ophthalmol Vis Sci. 2007;48(12):5420–30. doi:10.1167/iovs.07-0287.
  • Tamada Y, Nakajima E, Nakajima T, Shearer TR, Azuma M. Proteolysis of neuronal cytoskeletal proteins by calpain contributes to rat retinal cell death induced by hypoxia. Brain Res. 19. 2005;1050(1–2):148–55. doi:10.1016/j.brainres.2005.05.048.
  • Nakajima E, David LL, Bystrom C, Shearer TR, Azuma M. Calpain-specific proteolysis in primate retina: contribution of calpains in cell death. Invest Ophthalmol Vis Sci. 2006;47(12):5469–75. doi:10.1167/iovs.06-0567.
  • Balaratnasingam C, Morgan WH, Bass L, Matich G, Cringle SJ, Yu DY. Axonal transport and cytoskeletal changes in the laminar regions after elevated intraocular pressure. Invest Ophthalmol Vis Sci. 2007;48(8):3632–44. doi:10.1167/iovs.06-1002.
  • Huang X, Kong W, Zhou Y, Gregori G. Distortion of axonal cytoskeleton: an early sign of glaucomatous damage. Invest Ophthalmol Vis Sci. 2011;52(6):2879–88. doi:10.1167/iovs.10-5929.
  • Gupta N, Ly T, Zhang Q, Kaufman PL, Weinreb RN, Yücel YH. Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. Exp Eye Res. 2007;84(1):176–84. doi:10.1016/j.exer.2006.09.013.
  • Can N, Catak O, Turgut B, Demir T, Ilhan N, Kuloglu T, Ozercan IH. Neuroprotective and antioxidant effects of ghrelin in an experimental glaucoma model. Drugs Des Devel Ther. 2015;9:2819–29.
  • Dekeyster E, Aerts J, Valiente-Soriano FJ, De Groef L, Vreysen L, Sallinas-Navarro M, Vidal-Sanz M, Arckens L, Moons L. Ocular hypertension in retinotopic alterations in the visual cortex of adult mice. Curr Eye Res. 2015;40:1269–83. doi:10.3109/02713683.2014.990983.
  • Yang MH, Dibas A, Tyan YC. Changes in retinal aquaporin-9 (AQP9) expression in glaucoma. Biosci Rep. 2013;33:e00035. doi:10.1042/BSR20130005.
  • Gallego BI, Salazar JJ, De Hoz RB, Ramirez A, Salinas-Navarro M, Ortin-Martinez A, Valiente-Soriano FJ, Aviles-Trigueros M, Villegas-Perez MP, Vidal-Sannz M, et al. J Neuroinflam. 2012;9:92. doi:10.1186/1742-2094-9-92.
  • Dibas A, Yang MH, He S, Bobich J, Yorio T. Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. Mol Vis. 2008;14:1770–83.
  • Prasanna G, Hulet C, Desai D, Krishnamoorthy RR, Narayan S, Brun AM, Suburo AM, Yorio T. Effect of elevated intraocular pressure on endothelin-1 in a rat model of glaucoma. Pharmacol Res. 2005;51:41–50. doi:10.1016/j.phrs.2004.04.006.
  • Bringmann A, Francke M, Pannicke T, Biedermann B, Kodal H, Faude F, Reichelt W, Reichenbach A. Role of glial K+ channels in otogeny and gliosis: A hypothesis based upon studies on Muller cells. Glia. 2000;29:34–44. doi:10.1002/(SICI)1098-1136(20000101)29:1<35::AID-GLIA4>3.0.CO;2-A.
  • Chen H, Weber AJ. Expression of glial fibrillary acidic protein and glutamine synthetase by Muller cells after optic nerve damage and intravitreal application of brain-derived neurotrophic factor. Glia. 2002;115–25. doi:10.1002/glia.10061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.