433
Views
23
CrossRef citations to date
0
Altmetric
Reviews

A Mini Review of Clinical and Research Applications of the Retinal Function Imager

, , , &
Pages 273-288 | Received 18 Apr 2017, Accepted 30 Nov 2017, Published online: 08 Jan 2018

References

  • Novotny H, Alvis D. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82–86. doi:10.1161/01.CIR.24.1.82.
  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science. 1991;254:1178–81. doi:10.1126/science.1957169.
  • Liang J, Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis. 1997;14:2884–92. doi:10.1364/JOSAA.14.002884.
  • Chen MF, Chui TY, Alhadeff P, Rosen RB, Ritch R, Dubra A, Hood DC. Adaptive optics imaging of healthy and abnormal regions of retinal nerve fiber bundles of patients with glaucoma. Invest Ophthalmol Vis Sci. 2015;56:674–81. doi:10.1167/iovs.14-15936.
  • Grinvald A, Bonhoeffer T, Vanzetta I, Pollack A, Aloni E, Ofri R, Nelson D. High-resolution functional optical imaging: from the neocortex to the eye. Ophthalmol Clin North Am. 2004;17:53–67. doi:10.1016/j.ohc.2003.12.003.
  • Vanzetta I, Deneus T, Grinvald A. High-resolution wide-field optical imaging of microvascular characteristics: from the neocortex to the eye. In Zhao M, editor Neurovascular coupling methods. New York: Springer Science+Business Media; 2014. p. 123–59.
  • Linsenmeier RA, Zhang HF. Retinal oxygen: from animals to humans. Prog Retin Eye Res. 2017. doi:10.1016/j.preteyeres.2017.01.003.
  • Ganekal S. Retinal functional imager (RFI): non-invasive functional imaging of the retina. Nepal J Ophthalmol. 2013;5:250–57.
  • Izhaky D, Nelson DA, Burgansky-Eliash Z, Grinvald A. Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals. Jpn J Ophthalmol. 2009;53:345–51. doi:10.1007/s10384-009-0689-0.
  • Tian J, Somfai GM, Campagnoli TR, Smiddy WE, DeBuc DC. Interactive retinal blood flow analysis of the macular region. Microvasc Res. 2016;104:1–10. doi:10.1016/j.mvr.2015.11.003.
  • Nelson DA, Krupsky S, Pollack A, Aloni E, Belkin M, Vanzetta I, Rosner M, Grinvald A. Special report: noninvasive multi-parameter functional optical imaging of the eye. Ophthalmic Surg Lasers Imag. 2005;36:57–66.
  • Somfai GM, Tian J, DeBuc DC. Assessment of potential vessel segmentation pitfalls in the analysis of blood flow velocity using the retinal function imager. Graefes Arch Clin Exp Ophthalmol. 2016;254:1075–81. doi:10.1007/s00417-015-3166-0.
  • Burgansky-Eliash Z, Lowenstein A, Neuderfer M, Kesler A, Barash H, Nelson DA, Grinvald A, Barak A. The correlation between retinal blood flow velocity measured by the retinal function imager and various physiological parameters. Ophthalmic Surg Lasers Imag. 2013;44:51–58. doi:10.3928/23258160-20121221-13.
  • Chhablani J, Bartsch DU, Cheng L, Gomez L, Alshareef RA, Rezeq SS, et al. Segmental reproducibility of retinal blood flow velocity measurements using retinal function imager. Graefes Arch Clin Exp Ophthalmol. 2013;251:2665–70. doi:10.1007/s00417-013-2360-1.
  • Jiang H, Delagao S, Tan J, Liu C, Rammohan K, DeBuc D, et al. Impaired retinal microcirculation in Multiple Sclerosis. Mult Scler. 2016;22:1812–20. doi:10.1177/1352458516631035.
  • Jiang H, DeBuc DC, Rundek T, Lam BL, Wright CB, Shen M, et al. Automated segmentation and fractal analysis of high-resolution non-invasive capillary perfusion maps of the human retina. Microvasc Res. 2013;89:172–75. doi:10.1016/j.mvr.2013.06.008.
  • Jiang H, Delgado S, Liu C, Rammohan KW, DeBuc DC, Lam BL, et al. In vivo characterization of retinal microvascular network in multiple sclerosis. Ophthalmology. 2016;123:437–38. doi:10.1016/j.ophtha.2015.07.026.
  • Nelson DA, Burgansky-Eliash Z, Barash H, Loewenstein A, Barak A, Bartov E, et al. High-resolution wide-field imaging of perfused capillaries without the use of contrast agent. Clin Ophthalmol. 2011;5:1095–106.
  • Lopes De Faria JM, Andreazzi DD, Larico Chavez RF, Arthur AM, Arthur R, Iano Y. Reliability and validity of digital assessment of perifoveal capillary network measurement using high-resolution imaging. Br J Ophthalmol. 2014;98:726–29. doi:10.1136/bjophthalmol-2013-304100.
  • Dubis AM, Hansen BR, Cooper RF, Beringer J, Dubra A, Carroll J. Relationship between the foveal avascular zone and foveal pit morphology. Invest Ophthalmol Vis Sci. 2012;53:1628–36. doi:10.1167/iovs.11-8488.
  • Jittpoonkuson T, Garcia P, Landa G, Rosen R. Retinal blood-flow velocity and oximetry status monitoring in a central retinal vein occlusion patient. Retinal Physician. 2009;6:52–54.
  • Cohen LB, Keynes RD, Hille B. Light scattering and birefringence changes during nerve activity. Nature. 1968;218:438–41. doi:10.1038/218438a0.
  • Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature. 1986;324:361–64. doi:10.1038/324361a0.
  • Burgansky-Eliash Z, Nelson DA, Bar-Tal OP, Lowenstein A, Grinvald A, Barak A. Reduced retinal blood flow velocity in diabetic retinopathy. Retina. 2010;30:765–73. doi:10.1097/IAE.0b013e3181c596c6.
  • Beutelspacher SC, Serbecic N, Barash H, Burgansky-Eliash Z, Grinvald A, Krastel H, Jonas JB. Retinal blood flow velocity measured by retinal function imaging in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol. 2011;249:1855–58. doi:10.1007/s00417-011-1757-y.
  • Burgansky-Eliash Z, Barak A, Barash H, Nelson DA, Pupko O, Lowenstein A, Grinvald A, Rubinstein A. Increased retinal blood flow velocity in patients with early diabetes mellitus. Retina. 2012;32:112–19. doi:10.1097/IAE.0b013e31821ba2c4.
  • Klefter ON, Lauritsen AO, Larsen M. Retinal hemodynamic oxygen reactivity assessed by perfusion velocity, blood oximetry and vessel diameter measurements. Acta Ophthalmol. 2015;93:232–41. doi:10.1111/aos.12553.
  • Burgansky-Eliash Z, Barash H, Nelson D, Grinvald A, Sorkin A, Loewenstein A, Barak A. Retinal blood flow velocity in patients with age-related macular degeneration. Curr Eye Res. 2014;39:304–11. doi:10.3109/02713683.2013.840384.
  • Burgansky-Eliash Z, Bartov E, Barak A, Grinvald A, Gaton D. Blood-flow velocity in glaucoma patients measured with the retinal function imager. Curr Eye Res. 2016;41:965–70. doi:10.3109/02713683.2015.1080278.
  • Feng X, Kedhar S, Bhoomibunchoo C. Retinal blood flow velocity in patients with active uveitis using the retinal function imager. Chin Med J (Engl). 2013;126:1944–47.
  • Landa G, Garcia PM, Rosen RB. Correlation between retina blood flow velocity assessed by retinal function imager and retina thickness estimated by scanning laser ophthalmoscopy/optical coherence tomography. Ophthalmologica. 2009;223:155–61. doi:10.1159/000189819.
  • Beutelspacher SC, Serbecic N, Barash H, Burgansky-Eliash Z, Grinvald A, Jonas JB. Central serous chorioretinopathy shows reduced retinal flow circulation in retinal function imaging (RFI). Acta Ophthalmol. 2011;89:e479–e482. doi:10.1111/j.1755-3768.2011.02136.x.
  • Landa G, Jangi AA, Garcia PM, Rosen RB. Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI). Int Ophthalmol. 2012;32:211–15. doi:10.1007/s10792-012-9547-z.
  • Arbel Y, Sternfeld A, Barak A, Burgansky-Eliash Z, Halkin A, Berliner S, Herz I, Keren G, Rubinstein A, Banai S, et al. Inverse correlation between coronary and retinal blood flows in patients with normal coronary arteries and slow coronary blood flow. Atherosclerosis. 2014;232:149–54. doi:10.1016/j.atherosclerosis.2013.10.033.
  • Birger Y, Blumenfeld O, Bartov E, Burgansky-Eliash Z. Reduced retinal blood flow-velocity in severe hyperlipidemia measured by the retinal function imager. Graefes Arch Clin Exp Ophthalmol. 2011;249:1587–90. doi:10.1007/s00417-011-1716-7.
  • Gutfreund S, Izkhakov E, Pokroy R, Yaron M, Yeshua H, Burgansky-Eliash Z, Barak A, Rubinstein A. Retinal blood flow velocity in metabolic syndrome. Graefes Arch Clin Exp Ophthalmol. 2013;251:1507–13. doi:10.1007/s00417-013-2325-4.
  • Landa G, Rosen RB. New patterns of retinal collateral circulation are exposed by a Retinal Functional Imager (RFI). Br J Ophthalmol. 2010;94:54–58. doi:10.1136/bjo.2009.161257.
  • Landa G, Rosen RB. A new vascular pattern for idiopathic juxtafoveal telangiectasia revealed by the retinal function imager. Ophthalmic Surg Lasers Imag. 2010;41:413–17. doi:10.3928/15428877-20100325-04.
  • Li M, Yang Y, Jiang H, Gregori G, Roisman L, Zheng F, Ke B, Qu D, Wang J. Retinal microvascular network and microcirculation assessments in high myopia. Am J Ophthalmol. 2017;174:56–67. doi:10.1016/j.ajo.2016.10.018.
  • Landa G, Amde W, Haileselassie Y, Rosen RB. Cilioretinal arteries in diabetic eyes are associated with increased retinal blood flow velocity and occurrence of diabetic macular edema. Retina. 2011;31:304–11. doi:10.1097/IAE.0b013e3181e91108.
  • Barak A, Burgansky-Eliash Z, Barash H, Nelson DA, Grinvald A, Loewenstein A. The effect of intravitreal bevacizumab (Avastin) injection on retinal blood flow velocity in patients with choroidal neovascularization. Eur J Ophthalmol. 2012;22:423–30. doi:10.5301/ejo.5000074.
  • Bohni SC, Howell JP, Bittner M, Faes L, Bachmann LM, Thiel MA, Schmid MK. Blood flow velocity measured using the Retinal Function Imager predicts successful ranibizumab treatment in neovascular age-related macular degeneration: early prospective cohort study. Eye (Lond). 2015;29:630–36. doi:10.1038/eye.2015.10.
  • Behrouz R, Malek AR, Torbey MT. Small vessel cerebrovascular disease: the past, present, and future. Stroke Res Treat. 2012;2012:839151.
  • Jayadev C, Jain N, Sachdev S, Mohan A, Yadav NK. Utility of noninvasive imaging modalities in a retina practice. Indian J Ophthalmol. 2016;64:940–43. doi:10.4103/0301-4738.198850.
  • Geirsdottir A, Palsson O, Hardarson SH, Olafsdottir OB, Kristjansdottir JV, Stefansson E. Retinal vessel oxygen saturation in healthy individuals. Invest Ophthalmol Vis Sci. 2012;53:5433–42. doi:10.1167/iovs.12-9912.
  • Spaide RF, Klancnik JM Jr., Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133:45–50. doi:10.1001/jamaophthalmol.2014.3616.
  • Witkin AJ, Alshareef RA, Rezeq SS, Sampat KM, Chhablani J, Bartsch DU, Ke B, Qu D, Wang J. Comparative analysis of the retinal microvasculature visualized with fluorescein angiography and the retinal function imager. Am J Ophthalmol. 2012;154:901–07. doi:10.1016/j.ajo.2012.03.052.
  • Zhang M, Hwang TS, Campbell JP, Bailey ST, Wilson DJ, Huang D, Freeman WR, Haller JA, Garg SJ. Projection-resolved optical coherence tomographic angiography. Biomed Opt Express. 2016;7:816–28. doi:10.1364/BOE.7.000816.
  • Chui TY, Mo S, Krawitz B, Menon NR, Choudhury N, Gan A, et al. Human retinal microvascular imaging using adaptive optics scanning light ophthalmoscopy. Int J Retina Vitreous. 2016;2:11. doi:10.1186/s40942-016-0037-8.
  • Jiang H, Ye Y, DeBuc DC, Lam BL, Rundek T, Tao A, et al. Human conjunctival microvasculature assessed with a retinal function imager (RFI). Microvasc Res. 2013;85:134–37. doi:10.1016/j.mvr.2012.10.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.