279
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

The Development of Mid-Wavelength Photoresponsivity in the Mouse Retina

, &
Pages 666-673 | Received 03 Sep 2017, Accepted 15 Jan 2018, Published online: 15 Feb 2018

References

  • Renna JM, Weng S, Berson DM. Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents. Nature Neuroscience. 2011; 14(7): 827–29.
  • Chew KS, Renna JM, McNeill DS, Fernandez DC, Keenan WT, Thomsen MB, Ecker JL, Loevinsohn GS, VanDunk C, Vicarel DC, et al. A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice. Elife. 2017: 6: e22861.
  • Rao S, Chun C, Fan JQ, Kofron JM, Yang MB, Hegde RS, Ferrara N, Copenhagen DR, Lang RA. A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature. 2013; 494(7436): 243–46.
  • Johnson J, Wu V, Donovan M, Majumdar S, Renteria RC, Porco T, Van Gelder RN, Copenhagen DR. Melanopsin-dependent light avoidance in neonatal mice. PNAS. 2010; 107(40): 17374–78.
  • Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002; 295(5557): 1070–73.
  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002; 295(5557): 1065–70.
  • Sekaran S, Lupi D, Jones SL, Sheely CJ, Hattar S, Yau KW, Lucas RJ, Foster RG, Hankins MW. Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Current Biology: CB. 2005; 15(12): 1099–107.
  • Renna JM, Chellappa DK, Ross CL, Stabio ME, Berson DM. Melanopsin ganglion cells extend dendrites into the outer retina during early postnatal development. Dev Neuro. 2015; 75(9): 935–46.
  • Sondereker KB, Onyak JR, Islam SW, Ross CL, Renna JM. Melanopsin ganglion cell outer retinal dendrites: morphologically distinct and asymmetrically distributed in the mouse retina. J Comp Neurol. 2017; 525(17): 3653–65.
  • Lyubarsky AL, Falsini B, Pennesi ME, Valentini P, Pugh EN Jr. UV- and midwave-sensitive cone-driven retinal responses of the mouse: a possible phenotype for coexpression of cone photopigments. J Neuro. 1999; 19(1): 442–55.
  • Nikonov SS, Kholodenko R, Lem J, Pugh EN Jr. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. J Gen Physiol. 2006; 127(4): 359–74.
  • Heikkinen H, Vinberg F, Pitkanen M, Kommonen B, Koskelainen A. Flash responses of mouse rod photoreceptors in the isolated retina and corneal electroretinogram: comparison of gain and kinetics. Iovs. 2012; 53(9): 5653–64.
  • Vinberg F, Kefalov V. Simultaneous ex vivo functional testing of two retinas by in vivo electroretinogram system. Journal of Visualized Experiments: JoVE. 2015 May 6; (99): e52855.
  • Vinberg F, Kolesnikov AV, Kefalov VJ. Ex vivo ERG analysis of photoreceptors using an in vivo ERG system. Vision Research. 2014; 101: 108–17.
  • Heikkinen H, Nymark S, Koskelainen A. Mouse cone photoresponses obtained with electroretinogram from the isolated retina. Vision Research. 2008; 48(2): 264–72.
  • Takada Y, Fariss RN, Tanikawa A, Zeng Y, Carper D, Bush R, Sieving PA. A retinal neuronal developmental wave of retinoschisin expression begins in ganglion cells during layer formation. IOVS. 2004; 45(9): 3302–12.
  • Tian N, Xu HP, Wang P. Dopamine D2 receptors preferentially regulate the development of light responses of the inner retina. Euro J Neuro. 2015; 41(1): 17–30.
  • Xu Hp, Chen H, Ding Q, Xie Zh, Chen L, Diao L, Wang P, Gan L, Crair MC, Tian N. The immune protein CD3zeta is required for normal development of neural circuits in the retina. Neuron. 2010; 65(4): 503–15.
  • He Q, Xu HP, Wang P, Tian, N. Dopamine D1 receptors regulate the light dependent development of retinal synaptic responses. PloS One. 2013; 8(11): e79625.
  • Bakall B, Marmorstein LY, Hoppe G, Peachey NS, Wadelius C, Marmorstein AD. Expression and localization of bestrophin during normal mouse development. IOVS. 2003; 44(8): 3622–28.
  • Tian N, Copenhagen DR. Visual stimulation is required for refinement of ON and OFF pathways in postnatal retina. Neuron. 2003; 39(1): 85–96.
  • Bolnick DA, Walter AE, Sillman AJ. Barium suppresses slow PIII in perfused bullfrog retina. Vision Res. 1979; 19(10): 1117–19.
  • Berry J, Frederiksen R, Yao Y, Nymark S, Chen J, Cornwall C. Effect of rhodopsin phosphorylation on dark adaptation in mouse rods. J Neuro. 2016; 36(26): 6973–87.
  • Kolesnikov AV, Kefalov VJ. Transretinal ERG recordings from mouse retina: rod and cone photoresponses. JOVE. 2012May 14; 61.
  • Nymark S, Heikkinen H, Haldin C, Donner K, Koskelainen A. Light responses and light adaptation in rat retinal rods at different temperatures. J Physiol-London. 2005; 567(3): 923–38.
  • Lamb TD, Pugh EN Jr. A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol. 1992; 449: 719–58.
  • Fulton AB, Hansen RM, Findl O. The development of the rod photoresponse from dark-adapted rats. IOVS. 1995; 36(6): 1038–45.
  • Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL. Modeling transformations of neurodevelopmental sequences across mammalian species. J Neuro. 2013; 33(17): 7368–83.
  • Mets MB, Smith VC, Pokorny J, Postnatal Retinal PA. Development as Measured by the Electroretinogram in Premature-Infants. Doc Ophthalmol. 1995; 90(2): 111–27.
  • Shipley T, Anton MT. The human electroretinogram in the first day of life. J Pediatr. 1964; 65: 733–39.
  • Horsten GP, Winkelman JE. Development of the ERG in relation to histological differentiation of the retina in man and animals. Arch Ophthalmol. 1960; 63: 232–42.
  • Naeem MA, Chavali VR, Ali S, Iqbal M, Riazuddin S, Khan SN, Husnain T, Sieving PA, Ayyagari R, Riazuddin S, et al. GNAT1 associated with autosomal recessive congenital stationary night blindness. IOVS. 2012; 53(3): 1353–61.
  • Aavani T, Tachibana N, Wallace V, Biernaskie J, Schuurmans C. Temporal profiling of photoreceptor lineage gene expression during murine retinal development. Gene Expr Patterns. 2017; 23-24: 32–44.
  • LaVail MM. Kinetics of rod outer segment renewal in the developing mouse retina. J Cell Biol. 1973; 58(3): 650–61.
  • Carter-Dawson LD, LaVail MM. Rods and cones in the mouse retina. II Autoradiographic Analysis Cell Generation Using Tritiated Thymidine J Comp Neurol. 1979; 188(2): 263–72.
  • Fei Y. Development of the cone photoreceptor mosaic in the mouse retina revealed by fluorescent cones in transgenic mice. Mol Vis. 2003; 9: 31–42.
  • Mata NL, Radu RA, Clemmons RS, Travis GH. Isomerization and oxidation of vitamin A in cone-dominant retinas: A novel pathway for visual-pigment regeneration in daylight. Neuron. 2002; 36(1): 69–80.
  • Ratto GM, Robinson DW, Yan B, McNaughton PA. Development of the light response in neonatal mammalian rods. Nature. 1991; 351(6328): 654–57.
  • Calvert PD, Krasnoperova NV, Lyubarsky AL, Isayama T, Nicolo M, Kosaras B, Wong G, Gannon KS, Margolskee RF, Sidman RL, et al. Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha-subunit. PNAS. 2000; 97(25): 13913–18.
  • Swaroop A, Kim D, Forrest D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Reviews Neuro. 2010; 11(8): 563–76.
  • Blanks JC, Adinolfi AM, Lolley RN. Synaptogenesis in the photoreceptor terminal of the mouse retina. J Comp Neurol. 1974; 156(1): 81–93.
  • Rich KA, Zhan Y, Blanks JC. Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. J Comp Neurol. 1997; 388(1): 47–63.
  • Regus-Leidig H, Tom Dieck S, Specht D, Meyer L, Brandstatter JH. Early steps in the assembly of photoreceptor ribbon synapses in the mouse retina: the involvement of precursor spheres. J Comp Neurol. 2009; 512(6): 814–24.
  • Kim DS, Ross SE, Trimarchi JM, Aach J, Greenberg ME, Cepko CL. Identification of molecular markers of bipolar cells in the murine retina. J Comp Neurol. 2008; 507(5): 1795–810.
  • Fisher LJ. Development of synaptic arrays in the inner plexiform layer of neonatal mouse retina. J Comp Neurol. 1979; 187(2): 359–72.
  • Morgan JL, Schubert T, Wong RO. Developmental patterning of glutamatergic synapses onto retinal ganglion cells. Neural Development. 2008; 3: 8.
  • Johnson J, Tian N, Caywood MS, Reimer RJ, Edwards RH, Copenhagen DR. Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. J Neuro. 2003; 23(2): 518–29.
  • Ford KJ, Feller MB. Assembly and disassembly of a retinal cholinergic network. Vis Neuro. 2012; 29(1): 61–71.
  • Firl A, Ke JB, Zhang L, Fuerst PG, Singer JH, Feller MB. Elucidating the role of AII amacrine cells in glutamatergic retinal waves. J Neuro. 2015; 35(4): 1675–86.
  • Zhou ZJ, Zhao D. Coordinated transitions in neurotransmitter systems for the initiation and propagation of spontaneous retinal waves. J Neuro. 2000; 20(17): 6570–77.
  • Maccione A, Hennig MH, Gandolfo M, Muthmann O, Van Coppenhagen J, Eglen SJ, Berdondini L, Sernagor E. Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse. J Physiol. 2014; 592(7): 1545–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.