482
Views
4
CrossRef citations to date
0
Altmetric
Lens

ERK1/2-Dependent Gene Expression Contributing to TGFβ-Induced Lens EMT

, &
Pages 986-997 | Received 27 Nov 2017, Accepted 07 Apr 2018, Published online: 23 Apr 2018

References

  • Hales AM, Schulz MW, Chamberlain CG, McAvoy JW. TGF-beta 1 induces lens cells to accumulate alpha-smooth muscle actin, a marker for subcapsular cataracts. Curr Eye Res. 1994;13(12):885–90. doi:10.3109/02713689409015091.
  • Liu J, Hales AM, Chamberlain CG, McAvoy JW. Induction of cataract-like changes in rat lens epithelial explants by transforming growth factor- β. Invest Ophthalmol Vis Sci. 1994;35(2):388–401.
  • Hales AM, Chamberlain CG, McAvoy JW. Cataract induction in lenses cultured with transforming growth factor-β. Invest Ophthalmol Vis Sci. 1995;36(8):1709–13.
  • de Iongh RU, Wederell E, Lovicu FJ, McAvoy JW. Transforming growth factor-ß induced epithelial-mesenchymal transition in the lens: model for cataract formation. Cells Tissues Organs. 2005;179:43–55. doi:10.1159/000084508.
  • Zhao G, Wojciechowski MC, Jee S, Boros J, McAvoy JW, Lovicu FJ. Negative regulation of TGFβ-induced lens epithelial to mesenchymal transition (EMT) by RTK antagonists. Exp Eye Res. 2015;132:9–16. doi:10.1016/j.exer.2015.01.001.
  • Das SJ, Lovicu FJ, Collinson EJ. Nox4 plays a role in TGF-β-dependent lens epithelial to mesenchymal transition. Invest Ophthalmol Vis Sci. 2016;57:3665–73. doi:10.1167/iovs.16-19114.
  • Shu DY, Wojciechowski MC, Lovicu FJ. Bone Morphogenetic Protein-7 suppresses TGFβ2-induced epithelial-mesenchymal transition in the lens: implications for cataract prevention. Invest Ophthalmol Vis Sci. 2017;58:781–96. doi:10.1167/iovs.16-20611.
  • Wojciechowski MC, Mahmutovic L, Shu DY, Lovicu FJ. ERK1/2 signaling is required for the initiation but not progression of TGFβ-induced lens epithelial to mesenchymal transition (EMT). Exp Eye Res. 2017;159:98–113. doi:10.1016/j.exer.2017.03.012.
  • Boswell BA, Korol A, West-Mays JA, Musil LS. Dual function of TGFβ in lens epithelial cell fate: implications for secondary cataract. Mol Biol Cell. 2017;28:907–21. doi:10.1091/mbc.E16-12-0865.
  • Shin EHH, Basson MA, Robinson ML, McAvoy JW, Lovicu FJ. Sprouty is a negative regulator of transforming growth factor β-induced epithelial-to-mesenchymal transition and cataract. Mol Med. 2012;18:861–73. doi:10.2119/molmed.2012.00111.
  • Taiyab A, Korol A, Deschamps PA, West-Mays JA. β-Catenin/CBP-dependent signaling regulates TGF-β-induced Epithelial to Mesenchymal Transition of lens epithelial cells. Invest Ophthalmol Vis Sci. 2016;57:5736–47. doi:10.1167/iovs.16-20162.
  • Massague J. TGF-β Signal Transduction. Ann Rev Biochem. 1998;67:753–91. doi:10.1146/annurev.biochem.67.1.753.
  • Wrana JL, Attisano L. The Smad pathway. Cytokine Growth Factor Rev. 2000;11:5–13. doi:10.1016/S1359-6101(99)00024-6.
  • Yan X, Liu Z, Chen Y. Regulation of TGF-β signaling by Smad7. Acta Biochim Biophys Sin. 2009;41:263–72. doi:10.1093/abbs/gmp018.
  • Yan X, Liao H, Cheng M, Shi X, Lin X, Feng X-H, Chen Y-G. Smad7 protein interacts with receptor-regulated Smads (R-Smads) to inhibit transforming growth factor-β (TGF-β)/Smad signaling. J Biol Chem. 2016;291:382–92. doi:10.1074/jbc.M115.694281.
  • Koinuma D, Shinozaki M, Komuro A, Goto K, Saitoh M, Hanyu A, Ebina M, Nukiwa T, Miyazawa K, Imamura T, et al. Arkadia amplifies TGF-β superfamily signalling through degradation of Smad7. Embo J. 2003;22:6458–70. doi:10.1093/emboj/cdg632.
  • Cong N, Du P, Zhang A, Shen F, Su J, Pu P, Wang T, Zjang J, Kang C, Zhang Q, et al. Downregulated microRNA-200a promotes EMT and tumor growth through the Wnt/β-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncol Rep. 2013;29:1579–87. doi:10.3892/or.2013.2267.
  • Lee EH, Joo C-K. Role of transforming growth factor-β in transdifferentiation and fibrosis of lens epithelial cells. Invest Ophthalmol Vis Sci. 1999;40:2025–32.
  • Lovicu FJ, Steven P, Saika S, McAvoy JW. Aberrant lens fiber differentiation in anterior subcapsular cataract formation: a process dependent on reduced levels of Pax6. Invest Ophthalmol Vis Sci. 2004;45:1946–53. doi:10.1167/iovs.03-1206.
  • Nathu Z, Dwivedi DJ, Reddan JR, Sheardown H, Margetts PJ, West-Mays JA. Temporal changes in MMP mRNa expression in the lens epithelium during anterior subcapsular cataract formation. Exp Eye Res. 2009;88:323–30. doi:10.1016/j.exer.2008.08.014.
  • West-Mays JA, Pino G. Matrix metalloproteinases as mediators of primary and secondary cataracts. Expert Rev Ophthalmol. 2007;2:931–38. doi:10.1586/17469899.2.6.931.
  • Wong TTL, Daniels JT, Crowston JG, Khaw PT. MMP inhibition prevents human lens epithelial cell migration and contraction of the lens capsule. Br J Ophthalmol. 2004;88:868–72. doi:10.1136/bjo.2003.034629.
  • Maruno KA, Lovicu FJ, Chamberlain CG, McAvoy JW. Apoptosis is a feature of TGF beta-induced cataract. Clin Exp Optom. 2002;85:76–82. doi:10.1111/j.1444-0938.2002.tb03012.x.
  • McIlwain DR, Berger T, Mark TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5:a008656. doi:10.1101/cshperspect.a008656.
  • Hardwick JM, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5:a008722. doi:10.1101/cshperspect.a008722.
  • Condorelli F, Salomoni P, Cotteret S, Cesi V, Srinivasula SM, Alnemri ES, Calabretta B, et al. Caspase cleavage enhances the apoptosis-inducing effects of BAD. Mol Cell Biol. 2001;21:3025–36. doi:10.1128/MCB.21.9.3025-3036.2001.
  • Kumari RP, Ramkumar S, Thankappan B, Natarajaseenivasan K, Balaji S, Anbarasu K. Transcriptional regulation of crystallin, redox, and apoptotic genes by C-Phycocyanin in the selenite-induced cataractogenic rat model. Mol Vis. 2015;21:26–39.
  • West-Mays JA, Pino G, Lovicu FJ. Development and use of the lens epithelial explant system to study lens differentiation and cataractogenesis. Prog Retin Eye Res. 2010;29:135–43.
  • Lovicu FJ, McAvoy JW. FGF-induced lens cell proliferation and differentiation is dependent on MAPK (ERK1/2) signaling. Development. 2001;128:5075–84.
  • Guo H, Leung JCK, Lam MF, Chan LYY, Tsang AWL, Lan HY, Lai KN, et al. Smad7 transgene attenuates peritoneal fibrosis in uremic rats treated with peritoneal dialysis. J Am Soc Nephrol. 2007;18:2689–703. doi:10.1681/ASN.2007010121.
  • Briones-Orta MA, Levy L, Madsen CD, Das D, Erker Y, Sahai E, Hill CS, et al. Arkadia regulates tumor metastasis by modulation of the TGF-β pathway. Cancer Res. 2013;73:1800–10. doi:10.1158/0008-5472.CAN-12-1916.
  • Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP, et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Pnas. 2001;98:6686–91. doi:10.1073/pnas.111614398.
  • Xie L, Law BK, Chytil AM, Brown KA, Aakre M, Moses HL. Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia. 2004;6:603–10. doi:10.1593/neo.04241.
  • Chen X, Ye S, Xiao W, Wang W, Luo L, Liu Y. ERK1/2 pathway mediates epithelial-mesenchymal transition by cross-interacting with TGFβ/Smad and Jagged/Notch signaling pathways in lens epithelial cells. Int J Mol Med. 2014;33:1664–70. doi:10.3892/ijmm.2014.1723.
  • Tiwari A, Kumar R, Ram J, Sharma M, Luthra-Guptasarma M. Control of fibrotic changes through the synergistic effects of anti-fibronectin antibody and an RGDS-tagged form of the same antibody. Sci Rep. 2016;6:30872. doi:10.1038/srep30872.
  • Dawes LJ, Sleeman MA, Anderson IK, Reddan JR, Wormstone IM. TGFbeta/Smad4-dependent and –independent regulation of human lens epithelial cells. Invest Ophthalmol Vis Sci. 2009;50(11):5318–27. doi:10.1167/iovs.08-3223.
  • Li F, Zeng B, Chai Y, Cai P, Fan C, Cheng T. The linker region of Smad2 mediates TGF-β-dependent ERK2-induced collagen synthesis. Biochem Biophys Res Commun. 2009;386:289–93. doi:10.1016/j.bbrc.2009.05.084.
  • Wormstone IM, Anderson IK, Eldred JA, Dawes LJ, Duncan G. Short-term exposure to transforming growth factor β induces long-term fibrotic responses. Exp Eye Res. 2006;83:1238–45. doi:10.1016/j.exer.2006.06.013.
  • Mason JM, Morrison DJ, Basson MA, Licht JD. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol. 2006;16:45–54. doi:10.1016/j.tcb.2005.11.004.
  • Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, et al. Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature. 1997;389:631–35. doi:10.1038/39369.
  • Wormstone IM, Wang L, Liu CS. Posterior capsule opacification. Exp Eye Res. 2009;88:257–69. doi:10.1016/j.exer.2008.10.016.
  • Dwivedi DJ, Pino G., Banh A, Nathu Z, Howchin D, Margetts Pj, Sivak JG, West-Mays JA, et al. Matrix metalloproteinase inhibitors suppress transforming growth factor-β-induced subcapsular cataract formation. Am J Pathol. 2006;168:69–78.
  • Gupta M, Korol A, West-Mays JA. Nuclear translocation of myocardin-related transcription factor-A during transforming growth factor beta-induced epithelial to mesenchymal transition of lens epithelial cells. Mol Vis. 2013;19:1017–28.
  • Korol A, Pino G, Dwivedi D, Robertson JV, Deschamps PA, West-Mays JA. Matrix metalloproteinase-9-null mice are resistant to TGF-β-induced anterior subcapsular cataract formation. Am J Pathol. 2014;184:2001–12. doi:10.1016/j.ajpath.2014.03.013.
  • Jun L, Xin T, Xia C. Comparative effects of TGF-β2/Smad2 and TGF-β2/Smad3 signaling pathways on proliferation, migration, and extracellular matrix production in a human lens cell line. Exp Eye Res. 2011;92:173–79. doi:10.1016/j.exer.2011.01.009.
  • Kumar S, Das A, Sen S. Extracellular matrix density promotes EMT by weakening cell-cell adhesions. Mol BioSyst. 2014;10:838–50. doi:10.1039/C3MB70431A.
  • Menke A, Philippi C, Vogelmann R, Seidel B, Lutz MP, Adler G, Wedlich D, et al. Down-regulation of E-cadherin gene expression by collagen type I and type III in pancreatic cancer cell lines. Cancer Res. 2001;61:3508–17.
  • Manthey AL, Terrell AM, Wang Y, Taube JR, Yallowitz AR, Duncan MK. The Zeb proteins δEF1 and Sip1 may have distinct functions in lens cells following cataract surgery. Invest Ophthalmol Vis Sci. 2014;55:5445–55. doi:10.1167/iovs.14-14845.
  • Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, Liu T, Simons JW, O’Regan RM, et al. Insulin-like growth factor-I-depdendent up-regulation of ZEB1 drives Epithelial-to-Mesenchymal transition in human prostate cancer cells. Cancer Res. 2008;68:2479–88. doi:10.1158/0008-5472.CAN-07-2559.
  • Mansfield KJ, Cerra A, Chamberlain CG. FGF-2 counteracts loss of TGFβ affected cells from rat lens explants: implication for PCO (after cataract). Mol Vis. 2004;10:521–32.
  • Symonds JG, Lovicu FJ, Chamberlain CG. Posterior capsule opacification-like changes in rat lens explants cultured with TGFβ and FGF: effects of cell coverage and regional differences. Exp Eye Res. 2006;82:693–99. doi:10.1016/j.exer.2005.09.008.
  • Feng H, Xiang H, Mao Y-W, Wang J, Liu J-P, Huang X-Q, Liu Y, Liu SJ, Luo C, Zhang XJ, et al. Human Bcl-2 activates ERK signaling pathway to regulate activating protein-1, lens epithelium-derived growth factor and downstream genes. Oncogene. 2004;23:7310–21. doi:10.1038/sj.onc.1208041.
  • Seo SY, Chen Y B, Ivanovska I, Ranger AM, Hong SJ, Dawson VL, Korsmeyer SJ, Bellows DS, Fannjiang Y, Hardwick JM, et al. BAD is a pro-survival factor prior to activation of its pro-apoptotic function. J Biol Chem. 2004;279:42240–49. doi:10.1074/jbc.M406775200.
  • Khairallah M, Kahloun R, Bourne R, Limburg H, Flaxman SR, Jonas JB, Keeffe J, Leasher J, Naidoo K, Pesudovs K, et al. Number of people blind or visually impaired by cataract worldwide and in word regions, 1990 to 2010. Invest Ophthalmol Vis Sci. 2015;56:6762–69. doi:10.1167/iovs.15-17201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.