850
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Optical Coherence Tomography Angiography in Glaucoma Care

&
Pages 1067-1082 | Received 16 Nov 2017, Accepted 06 May 2018, Published online: 23 May 2018

References

  • Tobe LA, Harris A, Hussain RM, Eckert G, Huck A, Park J, Egan P, Kim NJ, Siesky B. The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fibre layer structure in patients with open-angle glaucoma over an 18-month period. Br J Ophthalmol. 2015;99(5):609–12. doi:10.1136/bjophthalmol-2014-305780.
  • Leske MC, Connell AM, Wu SY, Hyman LG, Schachat AP. Risk factors for open-angle glaucoma. The barbados eye study. Arch Ophthalmol. 1995;113(7):918–24. doi:10.1001/archopht.1995.01100070092031.
  • De Moraes CG, Liebmann JM, Greenfield DS, Gardiner SK, Ritch R, Krupin T; Low-pressure Glaucoma Treatment Study G. Risk factors for visual field progression in the low-pressure glaucoma treatment study. Am J Ophthalmol. 2012;154(4):702–11. doi:10.1016/j.ajo.2012.04.015.
  • Harris A, Rechtman E, Siesky B, Jonescu-Cuypers C, McCranor L, Garzozi HJ. The role of optic nerve blood flow in the pathogenesis of glaucoma. Ophthalmol Clin North Am. 2005;18(3):345–353, v. doi:10.1016/j.ohc.2005.04.001.
  • Oku H, Sugiyama T, Kojima S, Watanabe T, Azuma I. Experimental optic cup enlargement caused by endothelin-1-induced chronic optic nerve head ischemia. Surv Ophthalmol. 1999;44(Suppl 1):S74–84. doi:10.1016/S0039-6257(99)00068-5.
  • Costa VP, Sergott RC, Smith M, Spaeth GL, Wilson RP, Moster MR, Katz LJ, Schmidt CM. Color doppler imaging in glaucoma patients with asymmetric optic cups. J Glaucoma. 1994;3(Suppl 1):S91. doi:10.1097/00061198-199400321-00012.
  • Cull G, Burgoyne CF, Fortune B, Wang L. Longitudinal hemodynamic changes within the optic nerve head in experimental glaucoma. Invest Ophthalmol Vis Sci. 2013;54(6):4271–77. doi:10.1167/iovs.13-12013.
  • Hwang JC, Konduru R, Zhang X, Tan O, Francis BA, Varma R, Sehi M, Greenfield DS, Sadda SR, Huang D. Relationship among visual field, blood flow, and neural structure measurements in glaucoma. Invest Ophthalmol Vis Sci. 2012;53(6):3020–26. doi:10.1167/iovs.11-8552.
  • Martinez A, Sanchez M. Predictive value of colour doppler imaging in a prospective study of visual field progression in primary open-angle glaucoma. Acta Ophthalmol Scand. 2005;83(6):716–22. doi:10.1111/j.1600-0420.2005.00567.x.
  • Onda E, Cioffi GA, Bacon DR, Van Buskirk EM. Microvasculature of the human optic nerve. Am J Ophthalmol. 1995;120(1):92–102. doi:10.1016/S0002-9394(14)73763-8.
  • Olver JM, Spalton DJ, McCartney AC. Quantitative morphology of human retrolaminar optic nerve vasculature. Invest Ophthalmol Vis Sci. 1994;35(11):3858–66.
  • Olver JM, Spalton DJ, McCartney AC. Microvascular study of the retrolaminar optic nerve in man: the possible significance in anterior ischaemic optic neuropathy. Eye (Lond). 1990;4(Pt 1):7–24. doi:10.1038/eye.1990.3.
  • Na KI, Lee WJ, Kim YK, Jeoung JW, Park KH. Evaluation of optic nerve head and peripapillary choroidal vasculature using swept-source optical coherence tomography angiography. J Glaucoma. 2017;26(7):665–68. doi:10.1097/IJG.0000000000000684.
  • Topouzis F, Wilson MR, Harris A, Founti P, Yu F, Anastasopoulos E, Pappas T, Koskosas A, Salonikiou A, Coleman AL. Association of open-angle glaucoma with perfusion pressure status in the thessaloniki eye study. Am J Ophthalmol. 2013;155(5):843–51. doi:10.1016/j.ajo.2012.12.007.
  • Sommer A. Glaucoma risk factors observed in the baltimore eye survey. Curr Opin Ophthalmol. 1996;7(2):93–98. doi:10.1097/00055735-199604000-00016.
  • Tielsch JM, Katz J, Sommer A, Quigley HA, Javitt JC. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995;113(2):216–21. doi:10.1001/archopht.1995.01100020100038.
  • Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A. Vascular risk factors for primary open angle glaucoma: the egna-neumarkt study. Ophthalmology. 2000;107(7):1287–93. doi:10.1016/S0161-6420(00)00138-X.
  • Liu G, Chen Z. Advances in doppler oct. Chin Opt Lett. 2013;11(1):11702. doi:10.3788/COL201311.011702.
  • Chen Z, Milner TE, Srinivas S, Wang X, Malekafzali A, Van Gemert MJ, Nelson JS. Noninvasive imaging of in vivo blood flow velocity using optical doppler tomography. Opt Lett. 1997;22(14):1119–21. doi:10.1364/OL.22.001119.
  • Zhao Y, Chen Z, Saxer C, Xiang S, De Boer JF, Nelson JS. Phase-resolved optical coherence tomography and optical doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett. 2000;25(2):114–16. doi:10.1364/OL.25.000114.
  • Proskurin SG, He Y, Wang RK. Determination of flow velocity vector based on doppler shift and spectrum broadening with optical coherence tomography. Opt Lett. 2003;28(14):1227–29. doi:10.1364/OL.28.001227.
  • Leitgeb R, Schmetterer L, Drexler W, Fercher A, Zawadzki R, Bajraszewski T. Real-time assessment of retinal blood flow with ultrafast acquisition by color doppler fourier domain optical coherence tomography. Opt Express. 2003;11(23):3116–21. doi:10.1364/OE.11.003116.
  • Zhang A, Zhang Q, Chen CL, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20(10):100901. doi:10.1117/1.JBO.20.10.100901.
  • Fingler J, Schwartz D, Yang C, Fraser SE. Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. Opt Express. 2007;15(20):12636–53. doi:10.1364/OE.15.012636.
  • Wang RK. Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo. Phys Med Biol. 2007;52(23):N531–537. doi:10.1088/0031-9155/52/23/N01.
  • An L, Wang RK. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt Express. 2008;16(15):11438–52. doi:10.1364/OE.16.011438.
  • Szkulmowski M, Szkulmowska A, Bajraszewski T, Kowalczyk A, Wojtkowski M. Flow velocity estimation using joint spectral and time domain optical coherence tomography. Opt Express. 2008;16(9):6008–25. doi:10.1364/OE.16.006008.
  • Mariampillai A, Standish BA, Moriyama EH, Khurana M, Munce NR, Leung MK, Jiang J, Cable A, Wilson BC, Vitkin IA, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett. 2008;33(13):1530–32. doi:10.1364/OL.33.001530.
  • Schmitt JM, Xiang SH, Yung KM. Speckle in optical coherence tomography. J Biomed Opt. 1999;4(1):95–105. doi:10.1117/1.429925.
  • Boas DA, Dunn AK. Laser speckle contrast imaging in biomedical optics. J Biomed Opt. 2010;15(1):011109. doi:10.1117/1.3285504.
  • Lumbroso B, Huang D, Souied E, Rispoli M. Practical handbook of oct angiography. New Delhi: Jaypee Brothers,Medical Publishers Pvt. Limited; 2016.
  • Gao SS, Jia Y, Zhang M, Su JP, Liu G, Hwang TS, Bailey ST, Huang D. Optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT27–36. doi:10.1167/iovs.15-19043.
  • Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710–25. doi:10.1364/OE.20.004710.
  • Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, Lu CD, Choi W, Fujimoto JG, Huang D. Quantitative oct angiography of optic nerve head blood flow. Biomed Opt Express. 2012;3(12):3127–37. doi:10.1364/BOE.3.003127.
  • Tokayer J, Jia Y, Dhalla AH, Huang D. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomed Opt Express. 2013;4(10):1909–24. doi:10.1364/BOE.4.001909.
  • Stanga PE, Tsamis E, Papayannis A, Stringa F, Cole T, Jalil A. Swept-source optical coherence tomography angio (Topcon Corp, Japan): technology review. Dev Ophthalmol. 2016;56:13–17.
  • Ss oct angio (tm). 2017. [accessed 2017 Aug 31]. http://www.topconmedical.com/products/ssoctangiotm.htm.
  • 510(k) summary cirrus hd-oct with software version 8. 2016. [accessed 2017 Aug 25]. https://www.accessdata.fda.gov/cdrh_docs/pdf15/K150977.pdf.
  • Munk MR, Giannakaki-Zimmermann H, Berger L, Huf W, Ebneter A, Wolf S, Zinkernagel MS. Oct-angiography: A qualitative and quantitative comparison of 4 oct-a devices. Plos One. 2017;12(5):e0177059. doi:10.1371/journal.pone.0177059.
  • 510(k) rtvue xr avanti with angiovue software. 2016. [accessed 2017 Aug 25]. https://www.accessdata.fda.gov/cdrh_docs/pdf15/K153080.pdf.
  • Rosenfeld PJ, Durbin MK, Roisman L, Zheng F, Miller A, Robbins G, Schaal KB, Gregori G. Zeiss angioplex spectral domain optical coherence tomography angiography: technical aspects. Dev Ophthalmol. 2016;56:18–29.
  • Turgut B. Optical coherence tomography angiography - a general view. Eur Ophthalmic Rev. 2016;10(1):39–42. doi:10.17925/EOR.2016.10.01.39.
  • Coscas G, Lupidi M, Coscas F. Heidelberg spectralis optical coherence tomography angiography: technical aspects. Dev Ophthalmol. 2016;56:1–5.
  • Optovue oct + octa. 2016. [accessed 2017 Aug 28]. http://content.optovue.com/hubfs/PDF/optovue-avanti-angiovue-brochure_101016v2.pdf.
  • Heidelberg Engineering GmbH. Heidelberg engineering user documentation. Germany: Heidelberg Engineering GmbH; 2016.
  • Campbell JP, Zhang M, Hwang TS, Bailey ST, Wilson DJ, Jia Y, Huang D. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017;7:42201. doi:10.1038/srep42201.
  • Provis JM. Development of the primate retinal vasculature. Prog Retin Eye Res. 2001;20(6):799–821. doi:10.1016/S1350-9462(01)00012-X.
  • Snodderly DM, Weinhaus RS, Choi JC. Neural-vascular relationships in central retina of macaque monkeys (macaca fascicularis). J Neurosci. 1992;12(4):1169–93. doi:10.1523/JNEUROSCI.12-04-01169.1992.
  • Henkind P. Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative. Br J Ophthalmol. 1967;51(2):115–23. doi:10.1136/bjo.51.2.115.
  • Yu PK, Cringle SJ, Yu DY. Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp Eye Res. 2014;129:83–92. doi:10.1016/j.exer.2014.10.020.
  • Alterman M, Henkind P. Radial peripapillary capillaries of the retina. Ii. Possible role in bjerrum scotoma. Br J Ophthalmol. 1968;52(1):26–31. doi:10.1136/bjo.52.1.26.
  • Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121(7):1322–32. doi:10.1016/j.ophtha.2014.01.021.
  • Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, Davis E, Morrison JC, Huang D. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133(9):1045–52. doi:10.1001/jamaophthalmol.2015.2225.
  • Akagi T, Iida Y, Nakanishi H, Terada N, Morooka S, Yamada H, Hasegawa T, Yokota S, Yoshikawa M, Yoshimura N. Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study. Am J Ophthalmol. 2016;168:237–49. doi:10.1016/j.ajo.2016.06.009.
  • Chihara E, Dimitrova G, Amano H, Chihara T. Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes. Invest Ophthalmol Vis Sci. 2017;58(1):690–97. doi:10.1167/iovs.16-20709.
  • Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, Yousefi S, Belghith A, Saunders LJ, Medeiros FA, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016;57(9):OCT451–459. doi:10.1167/iovs.15-18944.
  • Rao HL, Pradhan ZS, Weinreb RN, Reddy HB, Riyazuddin M, Sachdeva S, Puttaiah NK, Jayadev C, Webers CAB. Determinants of peripapillary and macular vessel densities measured by optical coherence tomography angiography in normal eyes. J Glaucoma. 2017;26(5):491–97. doi:10.1097/IJG.0000000000000655.
  • Kumar RS, Anegondi N, Chandapura RS, Sudhakaran S, Kadambi SV, Rao HL, Aung T, Sinha Roy A. Discriminant function of optical coherence tomography angiography to determine disease severity in glaucoma. Invest Ophthalmol Vis Sci. 2016;57(14):6079–88. doi:10.1167/iovs.16-19984.
  • Wang Q, Chan S, Yang JY, You B, Wang YX, Jonas JB, Wei WB. Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography. Am J Ophthalmol. 2016;168:95–109. doi:10.1016/j.ajo.2016.05.005.
  • Shin JW, Sung KR, Lee JY, Kwon J, Seong M. Optical coherence tomography angiography vessel density mapping at various retinal layers in healthy and normal tension glaucoma eyes. Graefes Arch Clin Exp Ophthalmol. 2017;255(6):1193–202. doi:10.1007/s00417-017-3671-4.
  • Geyman LS, Garg RA, Suwan Y, Trivedi V, Krawitz BD, Mo S, Pinhas A, Tantraworasin A, Chui TY, Ritch R, et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol. 2017. doi:10.1136/bjophthalmol-2016-309642.
  • Pechauer AD, Jia Y, Liu L, Gao SS, Jiang C, Huang D. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest Ophthalmol Vis Sci. 2015;56(5):3287–91. doi:10.1167/iovs.15-16655.
  • Hwang TS, Gao SS, Liu L, Lauer AK, Bailey ST, Flaxel CJ, Wilson DJ, Huang D, Jia Y. Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol. 2016;134(4):367–73. doi:10.1001/jamaophthalmol.2015.5658.
  • Yu J, Jiang C, Wang X, Zhu L, Gu R, Xu H, Jia Y, Huang D, Sun X. Macular perfusion in healthy chinese: an optical coherence tomography angiogram study. Invest Ophthalmol Vis Sci. 2015;56(5):3212–17. doi:10.1167/iovs.14-16270.
  • Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, Gentile RC, Hsiao YS, Zhou Q, Ko T, et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina. 2015;35(11):2353–63. doi:10.1097/IAE.0000000000000862.
  • Luksch A, Lasta M, Polak K, Fuchsjager-Mayrl G, Polska E, Garhofer G, Schmetterer L. Twelve-hour reproducibility of retinal and optic nerve blood flow parameters in healthy individuals. Acta Ophthalmol. 2009;87(8):875–80. doi:10.1111/j.1755-3768.2008.01388.x.
  • Yaoeda K, Shirakashi M, Funaki S, Funaki H, Nakatsue T, Abe H. Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser doppler flowmetry. Am J Ophthalmol. 2000;129(6):734–39. doi:10.1016/S0002-9394(00)00382-2.
  • Iester M, Altieri M, Michelson G, Vittone P, Calabria G, Traverso CE. Intraobserver reproducibility of a two-dimensional mapping of the optic nerve head perfusion. J Glaucoma. 2002;11(6):488–92. doi:10.1097/00061198-200212000-00006.
  • Jonescu-Cuypers CP, Harris A, Wilson R, Kagemann L, Mavroudis LV, Topouzis F, Coleman AL. Reproducibility of the heidelberg retinal flowmeter in determining low perfusion areas in peripapillary retina. Br J Ophthalmol. 2004;88(10):1266–69. doi:10.1136/bjo.2003.039099.
  • Akil H, Huang AS, Francis BA, Sadda SR, Chopra V. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS One. 2017;12(2):e0170476. doi:10.1371/journal.pone.0170476.
  • Rao HL, Pradhan ZS, Weinreb RN, Riyazuddin M, Dasari S, Venugopal JP, Puttaiah NK, Rao DAS, Devi S, Mansouri K, et al. Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma. Am J Ophthalmol. 2017;177:106–15. doi:10.1016/j.ajo.2017.02.020.
  • Rao HL, Kadambi SV, Weinreb RN, Puttaiah NK, Pradhan ZS, Rao DA, Kumar RS, Webers CA, Shetty R. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol. 2017;101(8):1066–70.
  • Scripsema NK, Garcia PM, Bavier RD, Chui TY, Krawitz BD, Mo S, Agemy SA, Xu L, Lin YB, Panarelli JF, et al. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2016;57(9):OCT611–OCT620. doi:10.1167/iovs.15-18945.
  • Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, Belghith A, Manalastas PI, Medeiros FA, Weinreb RN. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology. 2016;123(12):2498–508. doi:10.1016/j.ophtha.2016.08.041.
  • Shin JW, Lee J, Kwon J, Choi J, Kook MS. Regional vascular density-visual field sensitivity relationship in glaucoma according to disease severity. Br J Ophthalmol. 2017. doi:10.1136/bjophthalmol-2017-310180.
  • Hollo G. Relationship between oct angiography temporal peripapillary vessel-density and octopus perimeter paracentral cluster mean defect. J Glaucoma. 2017;26(5):397–402. doi:10.1097/IJG.0000000000000630.
  • Yarmohammadi A, Zangwill LM, Diniz-Filho A, Saunders LJ, Suh MH, Wu Z, Manalastas PIC, Akagi T, Medeiros FA, Weinreb RN. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology. 2017;124(5):709–19. doi:10.1016/j.ophtha.2017.01.004.
  • Mansoori T, Sivaswamy J, Gamalapati JS, Balakrishna N. Topography and correlation of radial peripapillary capillary density network with retinal nerve fibre layer thickness. Int Ophthalmol. 2017. doi:10.1007/s10792-017-0544-0.
  • Mase T, Ishibazawa A, Nagaoka T, Yokota H, Yoshida A. Radial peripapillary capillary network visualized using wide-field montage optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT504–510. doi:10.1167/iovs.15-18877.
  • Mammo Z, Heisler M, Balaratnasingam C, Lee S, Yu DY, Mackenzie P, Schendel S, Merkur A, Kirker A, Albiani D, et al. Quantitative optical coherence tomography angiography of radial peripapillary capillaries in glaucoma, glaucoma suspect, and normal eyes. Am J Ophthalmol. 2016;170:41–49. doi:10.1016/j.ajo.2016.07.015.
  • Hollo G. Vessel density calculated from oct angiography in 3 peripapillary sectors in normal, ocular hypertensive, and glaucoma eyes. Eur J Ophthalmol. 2016;26(3):e42–45. doi:10.5301/ejo.5000717.
  • Wang X, Jiang C, Ko T, Kong X, Yu X, Min W, Shi G, Sun X. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015;253(9):1557–64. doi:10.1007/s00417-015-3095-y.
  • Brusini P, Filacorda S. Enhanced glaucoma staging system (gss 2) for classifying functional damage in glaucoma. J Glaucoma. 2006;15(1):40–46. doi:10.1097/01.ijg.0000195932.48288.97.
  • Kurysheva NI, Maslova EV, Trubilina AV, Ardzhevnishvili TD, Fomin AV. Macular blood flow in glaucoma. Vestn Oftalmol. 2017;133(2):29–38. doi:10.17116/oftalma2017133229-37.
  • Rao HL, Pradhan ZS, Weinreb RN, Riyazuddin M, Dasari S, Venugopal JP, Puttaiah NK, Rao DA, Devi S, Mansouri K, et al. A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS One. 2017;12(3):e0173930. doi:10.1371/journal.pone.0173930.
  • Hollo G. Progressive decrease of peripapillary angioflow vessel density during structural and visual field progression in early primary open-angle glaucoma. J Glaucoma. 2017;26(7):661–64. doi:10.1097/IJG.0000000000000695.
  • Hollo G. Influence of large intraocular pressure reduction on peripapillary oct vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma. 2017;26(1):e7–e10. doi:10.1097/IJG.0000000000000527.
  • Zeboulon P, Leveque PM, Brasnu E, Aragno V, Hamard P, Baudouin C, Labbe A. Effect of surgical intraocular pressure lowering on peripapillary and macular vessel density in glaucoma patients: an optical coherence tomography angiography study. J Glaucoma. 2017;26(5):466–72. doi:10.1097/IJG.0000000000000652.
  • Wang X, Jiang C, Kong X, Yu X, Sun X. Peripapillary retinal vessel density in eyes with acute primary angle closure: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2017;255(5):1013–18. doi:10.1007/s00417-017-3593-1.
  • Chung HS, Harris A, Kagemann L, Martin B. Peripapillary retinal blood flow in normal tension glaucoma. Br J Ophthalmol. 1999;83(4):466–69. doi:10.1136/bjo.83.4.466.
  • Sehi M, Goharian I, Konduru R, Tan O, Srinivas S, Sadda SR, Francis BA, Huang D, Greenfield DS. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology. 2014;121(3):750–58. doi:10.1016/j.ophtha.2013.10.022.
  • De Leon JM, Cheung CY, Wong TY, Li X, Hamzah H, Aung T, Su DH. Retinal vascular caliber between eyes with asymmetric glaucoma. Graefes Arch Clin Exp Ophthalmol. 2015;253(4):583–89. doi:10.1007/s00417-014-2895-9.
  • Amerasinghe N, Aung T, Cheung N, Fong CW, Wang JJ, Mitchell P, Saw SM, Wong TY. Evidence of retinal vascular narrowing in glaucomatous eyes in an asian population. Invest Ophthalmol Vis Sci. 2008;49(12):5397–402. doi:10.1167/iovs.08-2142.
  • Lee JY, Yoo C, Park JH, Kim YY. Retinal vessel diameter in young patients with open-angle glaucoma: comparison between high-tension and normal-tension glaucoma. Acta Ophthalmol. 2012;90(7):e570–571. doi:10.1111/j.1755-3768.2011.02371.x.
  • Jonas JB, Nguyen XN, Naumann GO. Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric Data. Invest Ophthalmol Vis Sci. 1989;30(7):1599–603.
  • Lee EJ, Lee KM, Lee SH, Kim TW. Oct angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2016;57(14):6265–70. doi:10.1167/iovs.16-20287.
  • Anderson DR, Braverman S. Reevaluation of the optic disk vasculature. Am J Ophthalmol. 1976;82(2):165–74. doi:10.1016/0002-9394(76)90414-1.
  • Lee EJ, Lee KM, Lee SH, Kim TW. Parapapillary choroidal microvasculature dropout in glaucoma: a comparison between optical coherence tomography angiography and indocyanine green angiography. Ophthalmology. 2017. doi:10.1016/j.ophtha.2017.03.039.
  • Suh MH, Zangwill LM, Manalastas PI, Belghith A, Yarmohammadi A, Medeiros FA, Diniz-Filho A, Saunders LJ, Weinreb RN. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology. 2016;123(12):2509–18. doi:10.1016/j.ophtha.2016.09.002.
  • Park SC, Hsu AT, Su D, Simonson JL, Al-Jumayli M, Liu Y, Liebmann JM, Ritch R. Factors associated with focal lamina cribrosa defects in glaucoma. Invest Ophthalmol Vis Sci. 2013;54(13):8401–07. doi:10.1167/iovs.13-13014.
  • You JY, Park SC, Su D, Teng CC, Liebmann JM, Ritch R. Focal lamina cribrosa defects associated with glaucomatous rim thinning and acquired pits. JAMA Ophthalmol. 2013;131(3):314–20. doi:10.1001/jamaophthalmol.2013.1926.
  • Suh MH, Zangwill LM, Manalastas PI, Belghith A, Yarmohammadi A, Medeiros FA, Diniz-Filho A, Saunders LJ, Yousefi S, Weinreb RN. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects. Ophthalmology. 2016;123(11):2309–17. doi:10.1016/j.ophtha.2016.07.023.
  • Gadde SG, Anegondi N, Bhanushali D, Chidambara L, Yadav NK, Khurana A, Sinha Roy A. Quantification of vessel density in retinal optical coherence tomography angiography images using local fractal dimension. Invest Ophthalmol Vis Sci. 2016;57(1):246–52. doi:10.1167/iovs.15-18287.
  • Wang X, Kong X, Jiang C, Li M, Yu J, Sun X. Is the peripapillary retinal perfusion related to myopia in healthy eyes? A prospective comparative study. BMJ Open. 2016;6(3):e010791. doi:10.1136/bmjopen-2015-010791.
  • Fuchsjager-Mayrl G, Wally B, Rainer G, Buehl W, Aggermann T, Kolodjaschna J, Weigert G, Polska E, Eichler HG, Vass C, et al. Effect of dorzolamide and timolol on ocular blood flow in patients with primary open angle glaucoma and ocular hypertension. Br J Ophthalmol. 2005;89(10):1293–97. doi:10.1136/bjo.2005.067637.
  • Shih GC, Calkins DJ. Secondary neuroprotective effects of hypotensive drugs and potential mechanisms of action. Expert Rev Ophthalmol. 2012;7(2):161–75. doi:10.1586/eop.12.13.
  • Siesky B, Harris A, Brizendine E, Marques C, Loh J, Mackey J, Overton J, Netland P. Literature review and meta-analysis of topical carbonic anhydrase inhibitors and ocular blood flow. Surv Ophthalmol. 2009;54(1):33–46. doi:10.1016/j.survophthal.2008.06.002.
  • Zhang M, Hwang TS, Campbell JP, Bailey ST, Wilson DJ, Huang D, Jia Y. Projection-resolved optical coherence tomographic angiography. Biomed Opt Express. 2016;7(3):816–28. doi:10.1364/BOE.7.000816.
  • Wang J, Zhang M, Hwang TS, Bailey ST, Huang D, Wilson DJ, Jia Y. Reflectance-based projection-resolved optical coherence tomography angiography [invited]. Biomed Opt Express. 2017;8(3):1536–48. doi:10.1364/BOE.8.001536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.