184
Views
10
CrossRef citations to date
0
Altmetric
Extra-Ocular Structure

Polarization and Distribution of Tumor-Associated Macrophages and COX-2 Expression in Basal Cell Carcinoma of the Ocular Adnexae

, , , & ORCID Icon
Pages 1126-1135 | Received 02 Apr 2017, Accepted 14 May 2018, Published online: 04 Jun 2018

References

  • Allali J, D´Hermies F, Renard G. Basal cell carcinomas of the eyelids. Ophthalmologica. 2005;219(2):57–71. doi:10.1159/000083263.
  • Sexton M, Jones DB, Maloney ME. Histologic pattern analysis of basal cell carcinoma. Study of a series of 1039 consecutive neoplasms. J Am Acad Dermatol. 1990;23:1118–26. doi:10.1016/0190-9622(90)70344-H.
  • Rosner M, Fabian ID. Basal cell carcinoma. In: Pe’er J, Singh AD, eds. Clinical ophthalmic oncology. Berlin (Heidelberg): Springer; 2014. p. 33–42.
  • Mannor GE, Chern PL, Barnette D. Eyelid and periorbital skin basal cell carcinoma: oculoplastic management and surgery. Int Ophthalmol Clin. 2009;49(4):1–16. doi:10.1097/IIO.0b013e3181b7ebe8.
  • Czyz CN, Cahill KV, Foster JA, Michels KS, Clark CM, Rich NE. Reconstructive options for the medial canthus and eyelids following tumor excision. Saudi J Ophthalmol. 2011;25(1):67–74. doi:10.1016/j.sjopt.2010.10.009.
  • Emesz M, Krall E, Nischler C, Rasp M, Dexl AK, Bauer F, Grabner G, Arlt EM. Operation nach Hughes und damit kombinierte Verfahren. Ophtalmologe. 2014;111(5):448–53. doi:10.1007/s00347-013-2918-7.
  • Loser CR, Rompel R, Möhrle M, Häfner HM, Kunte C, Hassel J, Hohenleutner U, Podda M, Sebastian G, Hafner J, et al. S1 guideline: microscopically controlled surgery (MCS). J Dtsch Dermatol Ges. 2015;13(9):942–51.
  • Mathijssen IMJ, Jc VDM. Guidelines for reconstruction of the eyelids and canthal regions. J Plast Reconstr Aesthet Surg. 2010;63(9):1420–33. doi:10.1016/j.bjps.2009.05.035.
  • Renner G, Kang T. Periorbital reconstruction: brows and eyelids. Facial Plast Surg Clin North Am. 2005;13(2):253–65. doi:10.1016/j.fsc.2004.11.003.
  • Balkwill FR, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45. doi:10.1016/S0140-6736(00)04046-0.
  • Balkwill FR, Mantovani A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol. 2012;22(1):33–40. doi:10.1016/j.semcancer.2011.12.005.
  • Bronkhorst IHG, Jordanova ES, Versluis M, Luyten GPM, Jager M. Detection of M2-macrophages in uveal melanoma and relation with survival. Invest Ophthalmol Vis Sci. 2011;52(2):643–50. doi:10.1167/iovs.10-5979.
  • Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. doi:10.1038/nature07205.
  • Waldner MJ, Neurath MF. Colitis-associated cancer: the role of T cells in tumor development. Semin Immunopathol. 2009;31:249–56. doi:10.1007/s00281-009-0161-8.
  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55. doi:10.1016/S1471-4906(02)02302-5.
  • Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22(2):231–37. doi:10.1016/j.coi.2010.01.009.
  • Herwig MC, Bergstrom C, Wells JR, Holler T, Grossniklaus HE. M2/M1 ratio of tumor associated macrophages and PPAR-gamma expression in uveal melanomas with class 1 and class 2 molecular profiles. Exp Eye Res. 2013;107:52–58. doi:10.1016/j.exer.2012.11.012.
  • Tjiu JW, Chen JS, Shun CT, Lin SJ, Liao YH, Chu CY, Tsen-Fang T, Hsien-Ching C, Yang-Shia D, Hiroyasu I, et al. Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol. 2009;129(4):1016–25. doi:10.1038/jid.2008.310.
  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86. doi:10.1016/j.it.2004.09.015.
  • Bhandari P, Bateman AC, Mehta RL, Stacey BS, Johnson P, Cree IA, Di Nicolantonio F, Patel P. Prognostic significance of cyclooxygenase-2 (COX-2) expression in patients with surgically resectable adenocarcinoma of the oesophagus. BMC Cancer. 2006;6–134. doi:10.1186/1471-2407-6-134.
  • Kramer E, Herman O, Frand J, Leibou L, Schreiber L, Vaknine H. Ki67 as a biologic marker of basal cell carcinoma: a retrospective study. Isr Med Assoc J. 2014;16:229–32.
  • Kaur P, Mulvaney M, Carlson JA. Basal cell carcinoma progression correlates with host immune response and stromal alterations: a histologic analysis. Am J Dermatopathol. 2006;28(4):293–307. doi:10.1097/00000372-200608000-00002.
  • Rohrbach JM, Stiemer R, Mayer A, Riedinger C, Duijvestijn A, Zierhut M. Immunology and growth characteristics of ocular basal cell carcinoma. Graefes Arch Clin Exp Ophthalmol. 2001;239(1):35–40. doi:10.1007/s004170000221.
  • Deng JS, Brod BA, Saito R, Tharp MD. Immune-associated cells in basal cell carcinomas of skin. J Cutan Pathol. 1996;23(2):140–46. doi:10.1111/cup.1996.23.issue-2.
  • Habets JM, Tank B, Vuzevski VD, van Reede EC, Stolz E, van Joost T. Characterization of the mononuclear infiltrate in basal cell carcinoma: a predominantly T cell-mediated immune response with minor participation of Leu-7+ (natural killer) cells and Leu-14+ (B) cells. J Invest Dermatol. 1988;90(3):289–92. doi:10.1111/1523-1747.ep12456065.
  • Sivrikoz ON, Uyar B, Dag F, Tasli F, Sanal SM. CXCR-4 and COX-2 expression in basal cell carcinomas and well-differentiated squamous cell carcinomas of the skin; their relationship with tumor invasiveness and histological subtype. Turk Patoloji Dergisi. 2015;31:30–35.
  • Karahan N, Baspinar S, Bozkurt KK, Caloglu E, Ciris IM, Kapucuoglu N. Increased expression of COX-2 in recurrent basal cell carcinoma of the skin: a pilot study. Indian J Pathol Microbiol. 2011;54(3):526–31. doi:10.4103/0377-4929.85086.
  • Karagece YU, Seçkin S. The expression of p53 and COX-2 in basal cell carcinoma, squamous cell carcinoma and actinic keratosis cases. Türk Patoloji Dergisi. 2012;2:119–27.
  • El-Khalawany MA, Abou-Bakr AA. Role of cyclooxygenase-2, ezrin and matrix metallo-proteinase-9 as predictive markers for recurrence of basal cell carcinoma. J Cancer Res Ther. 2013;9(4):613–17. doi:10.4103/0973-1482.126456.
  • Johannesdottir SA, Chang ET, Mehnert F, Schmidt M, Olesen AB, Sorensen HT. Non-steroidal anti-inflammatory drugs and the risk of skin cancer: a population-based case-control study. Cancer. 2012;118(19):4768–76. doi:10.1002/cncr.27406.
  • Vogel U, Christensen J, Wallin H, Friis S, Nexø BA, Tjønneland A. Polymorphisms in COX-2, NSAID use and risk of basal cell carcinoma in a prospective study of Danes. Mutat Res. 2007;617:138–46. doi:10.1016/j.mrfmmm.2007.01.005.
  • Cahoon EK, Rajaraman P, Alexander BH, Doody MM, Linet MS, Freedman DM. Use of nonsteroidal anti-inflammatory drugs and risk of basal cell carcinoma in the United States radiologic technologists study. Int J Cancer. 2012;130(12):2939–48. doi:10.1002/ijc.26286.
  • Pettersen JS, Fuentes-Duculan J, Suárez-Fariñas M, Pierson KC, Pitts-Kiefer A, Fan L, Belkin DA, Wang CQF, Bhuvanendran S, Johnson-Huang LM, et al. Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. J Invest Dermatol. 2011;131(6):1322–30. doi:10.1038/jid.2011.9.
  • Sugaya M, Miyagaki T, Ohmatsu H, Suga H, Kai H, Kamata M, Fujita H, Asano Y, Tada Y, Kadono T, et al. Association of the numbers of CD163(+) cells in lesional skin and serum levels of soluble CD163 with disease progression of cutaneous T cell lymphoma. J Dermatol Sci. 2012;68(1):45–51. doi:10.1016/j.jdermsci.2012.07.007.
  • König S, Nitzki F, Uhmann A, Dittmann K, Theiss-Suennemann J, Herrmann M, Reichardt HM, Schwendener R, Pukrop T, Schulz-Schaeffer W, et al. Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice.2014. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093555.
  • Herwig MC, Holz FG, Loeffler KU. Distribution and presumed proliferation of macrophages in inflammatory diseases of the ocular adnexae. Cur Eye Res. 2015;40(6):604–10. doi:10.3109/02713683.2014.943909.
  • Kilian MM, Loeffler KU, Pfarrer C, Holz FG, Kurts C, Herwig MC. Intravitreally Injected HCmel12 melanoma cells serve as a mouse model of tumor biology of intraocular melanoma. Curr Eye Res. 2016;41(1):121–28. doi:10.3109/02713683.2015.1004721.
  • Moussai D, Mitsui H, Pettersen JS, Pierson KC, Shah KR, Suarez-Farinas M, Cardinale IR, Bluth MJ, Krueger JG, Carucci JA. The human cutaneous squamous cell carcinoma microenvironment is characterized by increased lymphatic density and enhanced expression of macrophage-derived VEGF-C. J Invest Dermatol. 2011;131(1):229–36. doi:10.1038/jid.2010.266.
  • Xu X, Jia R, Zhou Y, Song X, Fan X. Investigation of vasculogenic mimicry in sebaceous carcinoma of the eyelid. Acta Ophthalmologica. 2010;5(2):160–64. doi:10.1111/j.1755-3768.2010.01942.x.
  • Wermuth PJ, Jimenez SA. The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clin Transl Med. 2015;4:2. doi:10.1186/s40169-015-0047-4.
  • Boas DS, Takiya CM, Coelho-Sampaio TL, Moncao-Ribeiro LC, Ramos EA, Cabral MG, Dos Santos JN. Immunohistochemical detection of Ki-67 is not associated with tumor-infiltrating macrophages and cyclooxygenase-2 in oral squamous cell carcinoma. J Oral Pathol Med. 2010;39(7):565–70. doi:10.1111/j.1600-0714.2010.00883.x.
  • Jang TJ. Epithelial to mesenchymal transition in cutaneous squamous cell carcinoma is correlated with COX-2 expression but not with the presence of stromal macrophages or CD10-expressing cells. Virchows Arch. 2012;460(5):481–87. doi:10.1007/s00428-012-1227-x.
  • Chen W, Hung W, Kang W, Huang Y, Su Y, Yang C, Chai C. Overexpression of cyclooxygenase-2 in urothelial carcinoma in conjunction with tumor-associated-macrophage infiltration, hypoxia-inducible factor-1alpha expression, and tumor angio-genesis. Apmis. 2009;117(3):176–84. doi:10.1111/j.1600-0463.2008.00004.x.
  • Sheehan KM, Steele C, Sheahan K, O’Grady A, Leader MB, Murray F, EKay EW. Association between cyclooxygenase-2-expressing macrophages, ulceration and microvessel density in colorectal cancer. Histopathology. 2005;46(3):287–95. doi:10.1111/j.1365-2559.2005.02083.x.
  • Kolaczkowska E, Goldys A, Kozakiewicz E, Lelito M, Plytycz B, van Rooijen NArnold B. Resident peritoneal macrophages and mast cells are important cellular sites of COX-1 and COX-2 activity during acute peritoneal inflammation. Arch Immunol Ther Exp (Warsz). 2009;57(6):459–66. doi:10.1007/s00005-009-0053-6.
  • Li H, Yang B, Huang J, Lin Y, Xiang T, Wan J, Li H, Chouaib S, Ren G. Cyclooxygenase-2 in tumor-associated macrophages promotes breast cancer cell survival by triggering a positive-feedback loop between macrophages and cancer cells. Oncotarget. 2015;6(30):29637–50.
  • Park CY, Choi JS, Lee SJ, Hwang SW, Kim EJ, Chuck RS. Cyclooxygenase-2-expressing macrophages in human pterygium co-express vascular endothelial growth factor. Mol Vis. 2011;17:3468–80.
  • Soysal HG, Soysal E, Markoç F, Ardiç F. Basal cell carcinoma of the eyelids and periorbital region in a Turkish population. Ophthal Plast Reconstr Surg. 2008;24(3):201–06. doi:10.1097/IOP.0b013e31816d954d.
  • Bastiaens MT, Hoefnagel JJ, Bruijn JA, Westendorp RG, Vermeer BJ, Bouwes Bavinck JN. Differences in age, site distribution, and sex between nodular and superficial basal cell carcinoma indicate different types of tumors. J Invest Dermatol. 1998;110(6):880–84. doi:10.1046/j.1523-1747.1998.00217.x.
  • Fish JA, Prichard I, Ettridge K, Grunfeld EA, Wilson C. Psychosocial factors that influence men’s help-seeking for cancer symptoms: a systematic synthesis of mixed methods research. Psychooncology. 2015;24:1222–32. doi:10.1002/pon.v24.10.
  • Galdas PM, Cheater F, Marshall P. Men and health help-seeking behaviour: literature review. J Adv Nurs. 2005;49(6):616–23. doi:10.1111/jan.2005.49.issue-6.
  • Yousaf O, Grunfeld EA, Hunter MS. A systematic review of the factors associated with delays in medical and psychological help-seeking among men. Health Psychol Rev. 2015;9(2):264–76. doi:10.1080/17437199.2013.840954.
  • Ben Simon GJ, Lukovetsky S, Lavinsky F, Rosen N, Rosner M. Histological and clinical features of primary and recurrent periocular Basal cell carcinoma. ISRN Ophthalmol. 2012;2012:354829. doi:10.5402/2012/354829.
  • Malhotra R, Huilgol SC, Huynh NT, Selva D. The Australian Mohs database, part II: periocular basal cell carcinoma outcome at 5-year follow-up. Ophthalmology. 2004;111(4):631–36. doi:10.1016/j.ophtha.2003.11.004.
  • Talghini S, Halimi M, Baybordi H. Expression of P27, Ki67 and P53 in squamous cell carcinoma, actinic keratosis and Bowen disease. Pak J Biol Sci. 2009;12:929–33. doi:10.3923/pjbs.2009.929.933.
  • Koseoglu RD, Sezer E, Eyibilen A, Aladag I, Etikan I. Expressions of p53, cyclinD1 and histopathological features in basal cell carcinomas. J Cutan Pathol. 2009;36(9):958–65. doi:10.1111/j.1600-0560.2009.01204.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.