510
Views
16
CrossRef citations to date
0
Altmetric
Review

A Review of the Cytokine IL-17 in Ocular Surface and Corneal Disease

, PhD, , PhD, , PhD, , PhD, , PhD & , PhD
Pages 1-10 | Received 16 Apr 2018, Accepted 31 Aug 2018, Published online: 19 Sep 2018

References

  • Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Organ. 2001;79:214–21.
  • Whitcher JP, Srinivasan M, Upadhyay MP. Prevention of corneal ulceration in the developing world. Int Ophthalmol Clin. 2002;42:71–77.
  • Forster RK. The management of infectious keratitis as we approach the 21st century. CLAO J. 1998;24:175–80.
  • Carnt N, Stapleton F. Strategies for the prevention of contact lens-related Acanthamoeba keratitis: a review. Ophthalmic Physiol Opt. 2016;36(2):77–92. doi:10.1111/opo.12271.
  • Kaye S, Choudhary A. Herpes simplex keratitis. Prog Retin Eye Res. 2006;25(4):355–80. doi:10.1016/j.preteyeres.2006.05.001.
  • Agrawal V, Biswas J, Madhavan HN, Mangat G, Reddy MK, Saini JS, Sharma S, Srinivasan M. Current perspectives in infectious keratitis. Indian J of Ophthal. 1994;42:171–92.
  • Hazlett L, Suvas S, McClellan S, Ekanayaka S. Challenges of corneal infections. Expert Rev Ophthal. 2016;11(4):285–97. doi:10.1080/17469899.2016.1203254.
  • Matsuzaki G, Umemura M. Interleukin-17 as an effector molecule of innate and acquired immunity against infections. Microbiol Immunol. 2007;51:1139–47.
  • Suryawanshi A, Mulik S, Sharma S, Reddy PB, Sehrawat S, Rouse BT. Ocular neovascularization caused by herpes simplex virus type 1 infection results from breakdown of binding between vascular endothelial growth factor A and its soluble receptor. J Immunol. 2011;186(6):3653–65. doi:10.4049/jimmunol.1003239.
  • Rajasagi NK, Reddy PB, Suryawanshi A, Mulik S, Gjorstrup P, Rouse BT. Controlling herpes simplex virus-induced ocular inflammatory lesions with the lipid-derived mediator resolvin E1. J Immunol. 2011;186(3):1735–46. doi:10.4049/jimmunol.1003456.
  • Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, Fujikado N, Tanahashi Y, Akitsu A, Kotaki H, et al. Differential roles of interleukin-17A and-17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity. 2009;30(1):108–19. doi:10.1016/j.immuni.2008.11.009.
  • Jin W, Dong C. IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect. 2013;2(9):e60. doi:10.1038/emi.2013.58.
  • Chabaud M, Garnero P, Dayer JM, Guerne PA, Fossiez F, Miossec P. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine. 2000;12(7):1092–99. doi:10.1006/cyto.2000.0681.
  • Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E, Saeland S, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokine. J Exp Med. 1996;183(6):2593–603.
  • Jovanovic DV, Martel‐Pelletier J, Di Battista JA, Mineau F, Jolicoeur FC, Benderdour M, Pelletier JP. Stimulation of 92-kd gelatinase (matrix metalloproteinase 9) production by interleukin‐17 in human monocyte/macrophages: a possible role in rheumatoid arthritis. Arthritis Rheum. 2000;43(5):1134–44. doi:10.1002/1529-0131(200005)43:5<1134::AID-ANR24>3.0.CO;2-#.
  • Koenders MI, Kolls JK, Oppers-Walgreen B, Van Den Bersselaar L, Joosten LA, Schurr JR, Schwarzenberger P, Van Den Berg WB, Lubberts E. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall–induced arthritis. Arthritis Rheum. 2005;52(10):3239–47. doi:10.1002/art.21342.
  • Yeh S, Song XJ, Farley W, Li DQ, Stern ME, Pflugfelder SC. Apoptosis of ocular surface cells in experimentally induced dry eye. Invest Ophthalmol Vis Sci. 2003;44:124–29.
  • Luo L, Li DQ, Pflugfelder SC. Hyperosmolarity-induced apoptosis in human corneal epithelial cells is mediated by cytochrome c and MAPK pathways. Cornea. 2007;26(4):452–60. doi:10.1097/ICO.0b013e318030d259.
  • Ho AW, Gaffen SL. IL-17RC: a partner in IL-17 signaling and beyond. Semin Immunopathol. 2010;32(1):33–42. doi:10.1007/s00281-009-0185-0.
  • Korn T, Oukka M, Kuchroo V, Bettelli E. Th17 cells: effector T cells with inflammatory properties. Semin Immunol. 2007;19(6):362–71. doi:10.1016/j.smim.2007.10.007.
  • Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity. 2011;34(2):149–62. doi:10.1016/j.immuni.2011.02.012.
  • Taylor PR, Roy S, Sm L Jr, Sun Y, Howell SJ, Cobb BA, Li X, Autocrine PE. IL-17A–IL-17RC neutrophil activation in fungal infections is regulated by IL-6, IL-23, RORγt and Dectin-2. Nat Immunol. 2014;15(2):143–51. doi:10.1038/ni.2797.
  • Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517. doi:10.1146/annurev.immunol.021908.132710.
  • Hernández-Santos N, Gaffen SL. Th17 cells in immunity to Candida albicans. Cell Host Microbe. 2012;11(5):425–35. doi:10.1016/j.chom.2012.04.008.
  • Liu J, Feng Y, Yang K, Li Q, Ye L, Han L, Wan H. Early production of IL-17 protects against acute pulmonary Pseudomonas aeruginosa infection in mice. FEMS Immunol Med Microbiol. 2011;61(2):179–88. doi:10.1111/j.1574-695X.2010.00764.x.
  • Miyazaki Y, Hamano S, Wang S, Shimanoe Y, Iwakura Y, Yoshida H. IL-17 is necessary for host protection against acute-phase Trypanosoma cruzi infection. J Immunol. 2010;185(2):1150–57. doi:10.4049/jimmunol.0900047.
  • O’Connor W Jr, Kamanaka M, Booth CJ, Town T, Nakae S, Iwakura Y, Kolls JK, Flavell RA. A protective function for interleukin 17A in T cell–mediated intestinal inflammation. Nat Immunol. 2009;10(6):603–09. doi:10.1038/ni.1736.
  • Huang X, Sun M, Chen F, Xiao Y, Chen L, Yao S, Cong Y. IL-17 promotes intestinal IgA response to intestinal infection but does not affect memory B cell development. J Immunol. 2017;198:200–16.
  • Eliçabe RJ, Silva JE, Dave MN, Lacoste MG, Tamashiro H, Blas R, Munarriz A, Rabinovich GA, Di Genaro MS. Association between IL-17 and IgA in the joints of patients with inflammatory arthropathies. BMC Immunol. 2017;18:8. doi:10.1186/s12865-017-0189-9.
  • Stapleton F, Carnt N. Contact lens-related microbial keratitis: how have epidemiology and genetics helped us with pathogenesis and prophylaxis. Eye. 2012;26(2):185–93. doi:10.1038/eye.2011.288.
  • Orlans HO, Hornby SJ, Bowler ICJW. In vitro antibiotic susceptibility patterns of bacterial keratitis isolates in Oxford, UK: a 10-year review. Eye. 2011;25(4):489–93. doi:10.1038/eye.2010.231.
  • Stapleton F, Keay LJ, Sanfilippo PG, Katiyar S, Edwards KP, Naduvilath T. Relationship between climate, disease severity, and causative organism for contact lens–associated microbial keratitis in Australia. Am J Ophthalmol. 2007;144(5):690–98. doi:10.1016/j.ajo.2007.06.037.
  • Bouhenni R, Dunmire J, Rowe T, Bates J. Proteomics in the study of bacterial keratitis. Proteomes. 2015;3(4):496–511. doi:10.3390/proteomes3040496.
  • Heimer SR, Yamada A, Russell H, Gilmore M. Response of corneal epithelial cells to Staphylococcus aureus. Virulence. 2010;1(4):223–35. doi:10.4161/viru.1.4.11466.
  • Zaidi TS, Zaidi T, Pier GB, Priebe GP. Topical neutralization of interleukin-17 during experimental Pseudomonas aeruginosa corneal infection promotes bacterial clearance and reduces pathology. Infect Immun. 2012;80(10):3706–12. doi:10.1128/IAI.00249-12.
  • Jurkunas U, Behlau I, Colby K. Fungal keratitis: changing pathogens and risk factors. Cornea. 2009;28(6):638–43. doi:10.1097/ICO.0b013e318191695b.
  • Thomas PA, Kaliamurthy J. Mycotic keratitis: epidemiology, diagnosis and management. Clin Microbiol Infect. 2013;19(3):210–20. doi:10.1111/1469-0691.12126.
  • Gaujoux T, Chatel MA, Chaumeil C, Laroche L, Borderie VM. Outbreak of contact lens-related Fusarium keratitis in France. Cornea. 2008;27(9):1018–21. doi:10.1097/ICO.0b013e318173144d.
  • Chang DC, Grant GB, O’Donnell K, Wannemuehler KA, Noble-Wang J, Rao CY, Jacobson LM, Crowell CS, Sneed RS, Lewis FM, et al. Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. JAMA. 2006;296(8):953–63. doi:10.1001/jama.296.8.953.
  • Kisand K, Wolff ASB, Podkrajšek KT, Tserel L, Link M, Kisand KV, Ersvaer E, Perheentupa J, Erichsen MM, Bratanic N, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207(2):299–308. doi:10.1084/jem.20091669.
  • Puel A, Döffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, Picard C, Cobat A, Ouachée-Chardin M, Toulon A, Bustamante J, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med. 2010;207(2):291–97. doi:10.1084/jem.20091983.
  • de Beaucoudrey L, Puel A, Filipe-Santos O, Cobat A, Ghandil P, Chrabieh M, Feinberg J, von Bernuth H, Samarina A, Jannière L, et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17–producing T cells. J Exp Med. 2008;205(7):1543–50. doi:10.1084/jem.20080321.
  • Ma CS, Chew GY, Simpson N, Priyadarshi A, Wong M, Grimbacher B, Fulcher DA, Tangye SG, Cook MC. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med. 2008;205(7):1551–57. doi:10.1084/jem.20080218.
  • Taylor PR, Leal SM, Sun Y, Aspergillus PE. and Fusarium corneal infections are regulated by Th17 cells and IL-17-producing neutrophils. J Immunol. 2014;192(7):3319–27. doi:10.4049/jimmunol.1302235.
  • Zhang H, Li H, Li Y, Zou Y, Dong X, Song W, Jia C, Li S, Xi H, Liu D, et al. IL‐17 plays a central role in initiating experimental Candida albicans infection in mouse corneas. Eur J Immunol. 2013;43(10):2671–82. doi:10.1002/eji.201242891.
  • Karthikeyan RS, Vareechon C, Prajna NV, Dharmalingam K, Pearlman E, Lalitha P. IL-17 expression in peripheral blood neutrophils from fungal keratitis patients and healthy cohorts in south India. J Infect Dis. 2015;211(1):130–34. doi:10.1093/infdis/jiu381.
  • Taylor PR, Roy S, Meszaros EC, Sun Y, Howell SJ, Malemud CJ, Pearlman E. JAK/STAT regulation of Aspergillus fumigatus corneal infections and IL-6/23-stimulated neutrophil, IL-17, elastase, and MMP9 activity. J Leukoc Biol. 2016;100(1):213–22. doi:10.1189/jlb.4A1015-483R.
  • Hodge WG, Seiff SR, Margolis TP. Ocular opportunistic infection incidences among patients who are HIV positive compared to patients who are HIV negative. Ophthalmology. 1998;105(5):895–900. doi:10.1016/S0161-6420(98)95033-3.
  • Young RC, Hodge DO, Liesegang TJ, Baratz KH. Incidence, recurrence, and outcomes of herpes simplex virus eye disease in Olmsted County, Minnesota, 1976-2007: the effect of oral antiviral prophylaxis. Arch Ophthalmol. 2010;128(9):1178–83. doi:10.1001/archophthalmol.2010.187.
  • Liesegang TJ. Herpes simplex virus epidemiology and ocular importance. Cornea. 2001;20:1–13.
  • Holland EJ, Schwartz GS. Classification of herpes simplex virus keratitis. Cornea. 1999;18:144–54.
  • Maertzdorf J, Osterhaus AD, Verjans GM. IL-17 expression in human herpetic stromal keratitis: modulatory effects on chemokine production by corneal fibroblasts. J Immunol. 2002;169:5897–903.
  • Molesworth-Kenyon SJ, Yin R, Oakes JE, Lausch RN. IL-17 receptor signaling influences virus-induced corneal inflammation. J Leukoc Biol. 2008;83(2):401–08. doi:10.1189/jlb.0807571.
  • Suryawanshi A, Veiga-Parga T, Rajasagi NK, Reddy PBJ, Sehrawat S, Sharma S, Rouse BT. Role of IL-17 and Th17 cells in herpes simplex virus-induced corneal immunopathology. J Immunol. 2011;187(4):1919–30. doi:10.4049/jimmunol.1100736.
  • Suryawanshi A, Veiga-Parga T, Reddy PB, Rajasagi NK, Rouse BT. IL-17A differentially regulates corneal vascular endothelial growth factor (VEGF)-A and soluble VEGF receptor 1 expression and promotes corneal angiogenesis after herpes simplex virus infection. J Immunol. 2012;188(7):3434–46. doi:10.4049/jimmunol.1102602.
  • Lorenzo-Morales J, Martín-Navarro CM, López-Arencibia A, Arnalich-Montiel F, Piñero JE, Valladares B. Acanthamoeba keratitis: an emerging disease gathering importance worldwide? Trends Parasitol. 2013;29(4):181–87. doi:10.1016/j.pt.2013.01.006.
  • Panjwani N. Pathogenesis of acanthamoeba keratitis. Ocul Surf. 2010;8:70–79.
  • Cohen EJ, Fulton JC, Hoffman CJ, Rapuano CJ, Laibson PR. Trends in contact lens-associated corneal ulcers. Cornea. 1996;15:566–70.
  • Sharma S, Garg P, Rao GN. Patient characteristics, diagnosis, and treatment of non-contact lens related acanthamoeba keratitis. Br J Ophthalmol. 2000;84:1103–08.
  • Suryawanshi A, Cao Z, Sampson JF, Panjwani N. IL-17A–mediated protection against acanthamoeba keratitis. J Immunol. 2015;194(2):650–63. doi:10.4049/jimmunol.1302707.
  • Carnt N, Montanez VM, Galatowicz G, Veli N, Calder V. Tear cytokine levels in contact lens wearers with acanthamoeba keratitis. Cornea. 2017;36(7):791–98. doi:10.1097/ICO.0000000000001238.
  • Moss SE, Klein R, Klein BE. Incidence of dry eye in an older population. Arch Ophthalmol. 2004;122(3):369–73. doi:10.1001/archopht.122.3.369.
  • Schein OD, Munoz B, Tielsch JM, Bandeen-Roche K, West S. Prevalence of dry eye among the elderly. Am J Ophthalmol. 1997;124:723–28.
  • Bandeen-Roche K, Munoz B, Tielsch JM, West SK, Schein OD. Self-reported assessment of dry eye in a population-based setting. Invest Ophthalmol Vis Sci. 1997;38:2469–75.
  • De Paiva CS, Chotikavanich S, Pangelinan SB, Pitcher JD, Fang B, Zheng X, Ma P, Farley WJ, Siemasko KF, Niederkorn JY, et al. IL-17 disrupts corneal barrier following desiccating stress. Mucosal Immunol. 2009;2(3):243–53. doi:10.1038/mi.2009.5.
  • Chauhan SK, El Annan J, Ecoiffier T, Goyal S, Zhang Q, Saban DR, Dana R. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J Immunol. 2009;182:1247–52.
  • Chauhan SK, Jin Y, Goyal S, Lee HS, Fuchsluger TA, Lee HK, Dana R. A novel pro-lymphangiogenic function for Th17/IL17. Blood. 2011;118:4630–34. doi:10.1182/blood-2011-01-332049.
  • Chen Y, Chauhan SK, Lee HS, Saban DR, Dana R. Chronic dry eye disease is principally mediated by effector memory Th17 cells. Mucosal Immunol. 2014;7:38–45. doi:10.1038/mi.2013.20.
  • Lee SY, Han SJ, Nam SM, Yoon SC, Ahn JM, Kim TI, Kim EK, Seo KY. Analysis of tear cytokines and clinical correlations in Sjögren syndrome dry eye patients and non–sjögren syndrome dry eye patients. Am J Ophthal. 2013;156:247–53. doi:10.1016/j.ajo.2013.04.003.
  • Tan X, Sun S, Liu Y, Zhu T, Wang K, Ren T, Wu Z, Xu H, Zhu L. Analysis of Th17-associated cytokines in tears of patients with dry eye syndrome. Eye. 2014;28:608–13. doi:10.1038/eye.2014.38.
  • Liu R, Gao C, Chen H, Li Y, Jin Y, Qi H. Analysis of Th17-associated cytokines and clinical correlations in patients with dry eye disease. PloS one. 2017;12:e0173301. doi:10.1371/journal.pone.0173301.
  • Sadrai Z, Stevenson W, Okanobo A, Chen Y, Dohlman TH, Hua J, Amparo F, Chauhan SK, Dana R. PDE4 inhibition suppresses IL-17–associated immunity in dry eye disease. Invest Ophthal Vis Sci. 2012;53:3584–91. doi:10.1167/iovs.11-9110.
  • Subbarayal B, Chauhan SK, Di Zazzo A, Dana R. IL-17 augments B cell activation in ocular surface autoimmunity. J Immunol. 2016;197:3464–70. doi:10.4049/jimmunol.1502641.
  • Stern ME, Schaumburg CS, Dana R, Calonge M, Niederkorn JY, Pflugfelder SC. Autoimmunity at the ocular surface: pathogenesis and regulation. Mucosal Immunol. 2010;3:425–42. doi:10.1038/mi.2010.26.
  • Wright JF, Bennett F, Li B, Brooks J, Luxenberg DP, Whitters MJ, Tomkinson KN, Fitz LJ, Wolfman NM, Collins M, et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J Immunol. 2008;181(4):2799–805.
  • Chiricozzi A, Krueger JG. IL-17 targeted therapies for psoriasis. Expert Opin Investig Drugs. 2013;22(8):993–1005. doi:10.1517/13543784.2013.806483.
  • Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, Antoni C, Draelos Z, Gold MH, Durez P, et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010;2(52):52ra72–52ra72. doi:10.1126/scitranslmed.3001107.
  • Wei M, Duan D. Efficacy and safety of monoclonal antibodies targeting interleukin-17 pathway for inflammatory arthritis: a meta-analysis of randomized controlled clinical trials. Drug Des Devel Ther. 2016;10:2771–77. doi:10.2147/DDDT.S91374.
  • Wu D, Hou SY, Zhao S, Hou LX, Jiao T, Xu NN, Zhang N. Efficacy and safety of interleukin‐17 antagonists in patients with plaque psoriasis: a meta-analysis from phase 3 randomized controlled trials. J Eur Acad Dermatol Venereol. 2017;31(6):992–1003. doi:10.1111/jdv.14125.
  • Baeten D, Baraliakos X, Braun J, Sieper J, Emery P, van der Heijde D, McInnes I, van Laar JM, Landewé R, Wordsworth P, et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382(9906):1705–13. doi:10.1016/S0140-6736(13)61134-4.
  • Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PDR, Wehkamp J, Feagan BG, Yao MD, Karczewski M, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61(12):1693–700. doi:10.1136/gutjnl-2011-301668.
  • Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, Lin S-L. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti–IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med. 2013;188(11):1294–302. doi:10.1164/rccm.201212-2318OC.
  • Hartung T, Daston G. Are in vitro tests suitable for regulatory use? Toxicol Sci. 2009;111(2):233–37. doi:10.1093/toxsci/kfp149.
  • Papp KA, Leonardi C, Menter A, Ortonne J-P, Krueger JG, Kricorian G, Aras G, Li J, Russell CB, Thompson EHZ, et al. Brodalumab, an anti–interleukin-17–receptor antibody for psoriasis. N Engl J Med. 2012;366(13):1181–89. doi:10.1056/NEJMoa1109017.
  • Genovese MC, Van den Bosch F, Roberson SA, Bojin S, Biagini IM, Ryan P, Sloan-Lancaster J. LY2439821, a humanized anti–interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum. 2010;62(4):929–39. doi:10.1002/art.27334.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.