164
Views
3
CrossRef citations to date
0
Altmetric
Retina and Optic Nerve

The G Allele of the rs12050217 Polymorphism in the BDKRB1 Gene Is Associated with Protection for Diabetic Retinopathy

, , , &
Pages 994-999 | Received 04 Dec 2018, Accepted 15 Apr 2019, Published online: 15 May 2019

References

  • Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond). 2015;2:17. doi:10.1186/s40662-015-0026-2.
  • Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen SJ, Dekker JM, Fletcher A, Grauslund J, et al. Meta-analysis for eye disease study G. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35:556–64. doi:10.2337/dc11-1909.
  • Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366:1227–39. doi:10.1056/NEJMra1005073.
  • Lutty GA, Cao J, McLeod DS. Relationship of polymorphonuclear leukocytes to capillary dropout in the human diabetic choroid. Am J Pathol. 1997;151:707–14.
  • Noda K, Nakao S, Ishida S, Ishibashi T. Leukocyte adhesion molecules in diabetic retinopathy. J Ophthalmol. 2012;2012:279037. doi:10.1155/2012/279037.
  • Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW. Diabetic retinopathy: more than meets the eye. Surv Ophthalmol. 2002;47:S253–262.
  • Eshaq RS, Aldalati AMZ, Alexander JS, Harris NR. Diabetic retinopathy: breaking the barrier. Pathophysiology. 2017. doi:10.1016/j.pathophys.2017.07.001.
  • Warpeha KM, Chakravarthy U. Molecular genetics of microvascular disease in diabetic retinopathy. Eye (Lond). 2003;17:305–11. doi:10.1038/sj.eye.6700348.
  • Brondani LA, de Souza BM, Duarte GC, Kliemann LM, Esteves JF, Marcon AS, Gross JL, Canani LH, Crispim D. The ucp1-3826a/g polymorphism is associated with diabetic retinopathy and increased ucp1 and mnsod2 gene expression in human retina. Invest Ophthalmol Vis Sci. 2012;53:7449–57. doi:10.1167/iovs.12-10660.
  • Abhary S, Hewitt AW, Burdon KP, Craig JE. A systematic meta-analysis of genetic association studies for diabetic retinopathy. Diabetes. 2009;58:2137–47. doi:10.2337/db09-0059.
  • Cho H, Sobrin L. Genetics of diabetic retinopathy. Curr Diab Rep. 2014;14:515. doi:10.1007/s11892-014-0475-3.
  • Liu J, Feener EP. Plasma kallikrein-kinin system and diabetic retinopathy. Biol Chem. 2013;394:319–28. doi:10.1515/hsz-2012-0316.
  • Calixto JB, Cabrini DA, Ferreira J, Campos MM. Inflammatory pain: kinins and antagonists. Curr Opin Anaesthesiol. 2001;14:519–26.
  • Campos MM, Cabrini DA, Cardozo AH, Rae GA, Toro JH, Calixto JB. Changes in paw oedema triggered via bradykinin b(1) and b(2) receptors in streptozotocin-diabetic rats. Eur J Pharmacol. 2001;416:169–77.
  • Mesquita TRR, Campos-Mota GP, Lemos VS, Cruz JS, de Jesus ICG, Camargo EA, Pesquero JL, Pesquero JB, Capettini L, Lauton-Santos S. Vascular kinin b1 and b2 receptors determine endothelial dysfunction through neuronal nitric oxide synthase. Front Physiol. 2017;8:228. doi:10.3389/fphys.2017.00228.
  • Ma JX, Song Q, Hatcher HC, Crouch RK, Chao L, Chao J. Expression and cellular localization of the kallikrein-kinin system in human ocular tissues. Exp Eye Res. 1996;63:19–26. doi:10.1006/exer.1996.0087.
  • Abdouh M, Khanjari A, Abdelazziz N, Ongali B, Couture R, Hassessian HM. Early upregulation of kinin b1 receptors in retinal microvessels of the streptozotocin-diabetic rat. Br J Pharmacol. 2003;140:33–40. doi:10.1038/sj.bjp.0705210.
  • Pouliot M, Talbot S, Senecal J, Dotigny F, Vaucher E, Couture R. Ocular application of the kinin b1 receptor antagonist lf22-0542 inhibits retinal inflammation and oxidative stress in streptozotocin-diabetic rats. PLoS One. 2012;7:e33864. doi:10.1371/journal.pone.0033864.
  • Abdouh M, Talbot S, Couture R, Hassessian HM. Retinal plasma extravasation in streptozotocin-diabetic rats mediated by kinin b(1) and b(2) receptors. Br J Pharmacol. 2008;154:136–43. doi:10.1038/bjp.2008.48.
  • Lawson SR, Gabra BH, Nantel F, Battistini B, Sirois P. Effects of a selective bradykinin b1 receptor antagonist on increased plasma extravasation in streptozotocin-induced diabetic rats: distinct vasculopathic profile of major key organs. Eur J Pharmacol. 2005;514:69–78. doi:10.1016/j.ejphar.2005.03.023.
  • Catanzaro O, Labal E, Andornino A, Capponi JA, Di Martino I, Sirois P. Blockade of early and late retinal biochemical alterations associated with diabetes development by the selective bradykinin b1 receptor antagonist r-954. Peptides. 2012;34:349–52. doi:10.1016/j.peptides.2012.02.008.
  • Pruneau D, Belichard P, Sahel JA, Combal JP. Targeting the kallikrein-kinin system as a new therapeutic approach to diabetic retinopathy. Curr Opin Investig Drugs. 2010;11:507–14.
  • von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, Initiative S. The strengthening the reporting of observational studies in epidemiology (strobe) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61:344–49. doi:10.1016/j.jclinepi.2007.11.008.
  • Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, Khoury MJ, Cohen B, Davey-Smith G, Grimshaw J, et al. Strengthening the reporting of genetic association studies (strega): an extension of the strobe statement. Hum Genet. 2009;125:131–51. doi:10.1007/s00439-008-0592-7.
  • Brondani LA, Duarte GC, Canani LH, Crispim D. The presence of at least three alleles of the adrb3 trp64arg (c/t) and ucp1-3826a/g polymorphisms is associated with protection to overweight/obesity and with higher high-density lipoprotein cholesterol levels in Caucasian-Brazilian patients with type 2 diabetes. Metab Syndr Relat Disord. 2014;12:16–24. doi:10.1089/met.2013.0077.
  • American Diabetes A. 2. Classification and diagnosis of diabetes. Diabetes Care. 2017;40:S11–S24. doi:10.2337/dc17-S005.
  • Wilkinson CP, Ferris FL 3rd, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT. Global Diabetic Retinopathy Project G. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–82. doi:10.1016/S0161-6420(03)00475-5.
  • Boelter MC, Gross JL, Canani LH, Costa LA, Lisboa HR, Tres GS, Lavinsky J, Azevedo MJ. Proliferative diabetic retinopathy is associated with microalbuminuria in patients with type 2 diabetes. Braz J Med Biol Res. 2006;39:1033–39.
  • Incerti J, Zelmanovitz T, Camargo JL, Gross JL, de Azevedo MJ. Evaluation of tests for microalbuminuria screening in patients with diabetes. Nephrol Dial Transplant. 2005;20:2402–07. doi:10.1093/ndt/gfi074.
  • Zelmanovitz T, Gross JL, Oliveira JR, Paggi A, Tatsch M, Azevedo MJ. The receiver operating characteristics curve in the evaluation of a random urine specimen as a screening test for diabetic nephropathy. Diabetes Care. 1997;20:516–19.
  • Wu H, Roks AJ, Leijten FP, Garrelds IM, Musterd-Bhaggoe UM, van Den Bogaerdt AJ, de Maat MP, Simoons ML, Danser AH, Oeseburg H. Genetic variation and gender determine bradykinin type 1 receptor responses in human tissue: implications for the ACE-inhibitor-induced effects in patients with coronary artery disease. Clin Sci (Lond). 2014;126:441–49. doi:10.1042/CS20130204.
  • Kwak SH, Park KS. Genetic studies on diabetic microvascular complications: focusing on genome-wide association studies. Endocrinol Metab (Seoul). 2015;30:147–58. doi:10.3803/EnM.2015.30.2.147.
  • Arar NH, Freedman BI, Adler SG, Iyengar SK, Chew EY, Davis MD, Satko SG, Bowden DW, Duggirala R, Elston RC, et al. Heritability of the severity of diabetic retinopathy: the find-eye study. Invest Ophthalmol Vis Sci. 2008;49:3839–45. doi:10.1167/iovs.07-1633.
  • Hietala K, Forsblom C, Summanen P, Groop PH, FinnDiane Study G. Heritability of proliferative diabetic retinopathy. Diabetes. 2008;57:2176–80. doi:10.2337/db07-1495.
  • Ahlqvist E, van Zuydam NR, Groop LC, McCarthy MI. The genetics of diabetic complications. Nat Rev Nephrol. 2015;11:277–87. doi:10.1038/nrneph.2015.37.
  • Yang X, Polgar P. Genomic structure of the human bradykinin b1 receptor gene and preliminary characterization of its regulatory regions. Biochem Biophys Res Commun. 1996;222:718–25. doi:10.1006/bbrc.1996.0810.
  • Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O‘Donnell CJ, de Bakker PI. Snap: A web-based tool for identification and annotation of proxy SNPs using hapmap. Bioinformatics. 2008;24:2938–39. doi:10.1093/bioinformatics/btn564.
  • Naslavsky MS, Yamamoto GL, de Almeida TF, Ezquina SAM, Sunaga DY, Pho N, Bozoklian D, Sandberg TOM, Brito LA, Lazar M, et al. Exomic variants of an elderly cohort of Brazilians in the ABraOM database. Hum Mutat. 2017;38:751–63. doi:10.1002/humu.23220.
  • Austinat M, Braeuninger S, Pesquero JB, Brede M, Bader M, Stoll G, Renne T, Kleinschnitz C. Blockade of bradykinin receptor b1 but not bradykinin receptor b2 provides protection from cerebral infarction and brain edema. Stroke. 2009;40:285–93. doi:10.1161/STROKEAHA.108.526673.
  • Murakami T. Kallikrein-kinin system: an emerging competitor or collaborator for VEGF in diabetic macular edema? Diabetes. 2015;64:3350–52. doi:10.2337/db15-0746.
  • Mejia AJ, Matus CE, Pavicic F, Concha M, Ehrenfeld P, Figueroa CD. Intracellular signaling pathways involved in the release of IL-4 and VEGF from human keratinocytes by activation of kinin b1 receptor: functional relevance to angiogenesis. Arch Dermatol Res. 2015;307:803–17. doi:10.1007/s00403-015-1595-6.
  • Duchene J, Lecomte F, Ahmed S, Cayla C, Pesquero J, Bader M, Perretti M, Ahluwalia A. A novel inflammatory pathway involved in leukocyte recruitment: role for the kinin b1 receptor and the chemokine cxcl5. J Immunol. 2007;179:4849–56.
  • Pesquero JB, Araujo RC, Heppenstall PA, Stucky CL, Silva JA Jr., Walther T, Oliveira SM, Pesquero JL, Paiva AC, Calixto JB, et al. Hypoalgesia and altered inflammatory responses in mice lacking kinin b1 receptors. Proc Natl Acad Sci U S A. 2000;97:8140–45. doi:10.1073/pnas.120035997.
  • Joussen AM, Poulaki V, Mitsiades N, Cai WY, Suzuma I, Pak J, Ju ST, Rook SL, Esser P, Mitsiades CS, et al. Suppression of fas-fasl-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J. 2003;17:76–78. doi:10.1096/fj.02-0157fje.
  • Miyamoto K, Khosrof S, Bursell SE, Rohan R, Murata T, Clermont AC, Aiello LP, Ogura Y, Adamis AP. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci U S A. 1999;96:10836–41.
  • Tang S, Le-Ruppert KC. Activated T lymphocytes in epiretinal membranes from eyes of patients with proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 1995;233:21–25.
  • Kase S, Saito W, Ohno S, Ishida S. Proliferative diabetic retinopathy with lymphocyte-rich epiretinal membrane associated with poor visual prognosis. Invest Ophthalmol Vis Sci. 2009;50:5909–12. doi:10.1167/iovs.09-3767.
  • Figueroa CD, Matus CE, Pavicic F, Sarmiento J, Hidalgo MA, Burgos RA, Gonzalez CB, Bhoola KD, Ehrenfeld P. Kinin b1 receptor regulates interactions between neutrophils and endothelial cells by modulating the levels of mac-1, lfa-1 and intercellular adhesion molecule-1. Innate Immun. 2015;21:289–304. doi:10.1177/1753425914529169.
  • Toda N, Nakanishi-Toda M. Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy. Prog Retin Eye Res. 2007;26:205–38. doi:10.1016/j.preteyeres.2007.01.004.
  • Leeb-Lundberg LM, Marceau F, Muller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. Xlv. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev. 2005;57:27–77. doi:10.1124/pr.57.1.2.
  • Pesquero JB, Bader M. Genetically altered animal models in the kallikrein-kinin system. Biol Chem. 2006;387:119–26. doi:10.1515/BC.2006.017.
  • Busse R, Fleming I. Molecular responses of endothelial tissue to kinins. Diabetes. 1996;45:S8–13.
  • Kuhr F, Lowry J, Zhang Y, Brovkovych V, Skidgel RA. Differential regulation of inducible and endothelial nitric oxide synthase by kinin b1 and b2 receptors. Neuropeptides. 2010;44:145–54. doi:10.1016/j.npep.2009.12.004.
  • Brovkovych V, Zhang Y, Brovkovych S, Minshall RD, Skidgel RA. A novel pathway for receptor-mediated post-translational activation of inducible nitric oxide synthase. J Cell Mol Med. 2011;15:258–69. doi:10.1111/j.1582-4934.2009.00992.x.
  • Cicik E, Tekin H, Akar S, Ekmekci OB, Donma O, Koldas L, Ozkan S. Interleukin-8, nitric oxide and glutathione status in proliferative vitreoretinopathy and proliferative diabetic retinopathy. Ophthalmic Res. 2003;35:251–55. doi:10.1159/000072145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.