387
Views
4
CrossRef citations to date
0
Altmetric
Cornea, Limbus & Ocular Surface

Good Visual Performance Despite Reduced Optical Quality during the First Month of Orthokeratology Lens Wear

, ORCID Icon, , , , ORCID Icon & show all
Pages 440-449 | Received 17 Apr 2019, Accepted 10 Sep 2019, Published online: 24 Sep 2019

References

  • Pan CW, Dirani M, Cheng CY, Wong TY, Saw SM. The age-specific prevalence of myopia in asia: A meta-analysis. Optom Vis Sci. 2015;92(3):258–66. doi:10.1097/OPX.0000000000000516.
  • Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–42. doi:10.1016/j.ophtha.2016.01.006.
  • Charm J, Cho P. High myopia-partial reduction ortho-k: A 2-year randomized study. Optom Vis Sci. 2013;90(6):530–39. doi:10.1097/OPX.0b013e318293657d.
  • Cho P, Cheung SW. Retardation of myopia in orthokeratology (romio) study: A 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2012;53(11):7077–85. doi:10.1167/iovs.12-10565.
  • He M, Du Y, Liu Q, Ren C, Liu J, Wang Q, Li L, Yu J. Effects of orthokeratology on the progression of low to moderate myopia in chinese children. BMC Ophthalmol. 2016;16:126. doi:10.1186/s12886-016-0302-5.
  • Cheng D, Woo GC, Drobe B, Schmid KL. Effect of bifocal and prismatic bifocal spectacles on myopia progression in children: three-year results of a randomized clinical trial. JAMA Ophthalmol. 2014;132(3):258–64. doi:10.1001/jamaophthalmol.2013.7623.
  • Hasebe S, Ohtsuki H, Nonaka T, Nakatsuka C, Miyata M, Hamasaki I, Kimura S. Effect of progressive addition lenses on myopia progression in japanese children: A prospective, randomized, double-masked, crossover trial. Invest Ophthalmol Vis Sci. 2008;49(7):2781–89. doi:10.1167/iovs.07-0385.
  • Chua WH, Balakrishnan V, Chan YH, Tong L, Ling Y, Quah BL, Tan D. Atropine for the treatment of childhood myopia. Ophthalmology. 2006;113(12):2285–91. doi:10.1016/j.ophtha.2006.05.062.
  • Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A, Tan D. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (atropine for the treatment of myopia 2). Ophthalmology. 2012;119(2):347–54. doi:10.1016/j.ophtha.2011.07.031.
  • Soni PS, Nguyen TT, Bonanno JA. Overnight orthokeratology: visual and corneal changes. Eye Contact Lens. 2003;29(3):137–45. doi:10.1097/01.ICL.0000072831.13880.A0.
  • Cheung SW, Cho P. Subjective and objective assessments of the effect of orthokeratology–a cross-sectional study. Curr Eye Res. 2004;28(2):121–27. doi:10.1076/ceyr.28.2.121.26236.
  • Maseedupally V, Gifford P, Lum E, Swarbrick H. Central and paracentral corneal curvature changes during orthokeratology. Optom Vis Sci. 2013;90(11):1249–58. doi:10.1097/OPX.0000000000000039.
  • Zhong Y, Chen Z, Xue F, Miao H, Zhou X. Central and peripheral corneal power change in myopic orthokeratology and its relationship with 2-year axial length change. Invest Ophthalmol Vis Sci. 2015;56(8):4514–19. doi:10.1167/iovs.14-13935.
  • Hiraoka T, Okamoto C, Ishii Y, Kakita T, Oshika T. Contrast sensitivity function and ocular higher-order aberrations following overnight orthokeratology. Invest Ophthalmol Vis Sci. 2007;48(2):550–56. doi:10.1167/iovs.06-0914.
  • Hiraoka T, Okamoto C, Ishii Y, Takahira T, Kakita T, Oshika T. Mesopic contrast sensitivity and ocular higher-order aberrations after overnight orthokeratology. Am J Ophthalmol. 2008;145(4):645–55. doi:10.1016/j.ajo.2007.11.021.
  • Hiraoka T, Kakita T, Okamoto F, Oshika T. Influence of ocular wavefront aberrations on axial length elongation in myopic children treated with overnight orthokeratology. Ophthalmology. 2015;122(1):93–100. doi:10.1016/j.ophtha.2014.07.042.
  • Santolaria-Sanz E, Cervino A, Gonzalez-Meijome JM. Corneal aberrations, contrast sensitivity, and light distortion in orthokeratology patients: 1-year results. J Ophthalmol. 2016;2016:8453462.
  • Lipson MJ, Sugar A, Musch DC. Overnight corneal reshaping versus soft daily wear: A visual quality of life study (interim results). Eye Contact Lens. 2004;30:214–217; discussion 218.
  • Santolaria E, Cervino A, Queiros A, Brautaset R, Gonzalez-Meijome JM. Subjective satisfaction in long-term orthokeratology patients. Eye Contact Lens. 2013;39(6):388–93. doi:10.1097/ICL.0b013e3182a27777.
  • Santolaria Sanz E, Cervino A, Queiros A, Villa-Collar C, Lopes-Ferreira D, Gonzalez-Meijome JM. Short-term changes in light distortion in orthokeratology subjects. Biomed Res Int. 2015;2015:278425.
  • Cho P, Cheung SW, Edwards M. The longitudinal orthokeratology research in children (loric) in hong kong: A pilot study on refractive changes and myopic control. Curr Eye Res. 2005;30(1):71–80. doi:10.1080/02713680590907256.
  • Swarbrick HA, Alharbi A, Watt K, Lum E, Kang P. Myopia control during orthokeratology lens wear in children using a novel study design. Ophthalmology. 2015;122(3):620–30. doi:10.1016/j.ophtha.2014.09.028.
  • Habtegiorgis SW, Rifai K, Lappe M, Wahl S. Experience-dependent long-term facilitation of skew adaptation. J Vis. 2018;18(9):7. doi:10.1167/18.9.7.
  • Leube A, Ohlendorf A, Wahl S. Global shape integration optotypes for the clinical assessment of visual acuity and subjective refraction. Invest Ophthalmol Vis Sci. 2018;59(9):1085. doi:10.1167/iovs.17-23678.
  • Wilkinson F, Wilson HR, Habak C. Detection and recognition of radial frequency patterns. Vision Res. 1998;38(22):3555–68. doi:10.1016/s0042-6989(98)00039-x.
  • Mullen KT, Beaudot WH. Comparison of color and luminance vision on a global shape discrimination task. Vision Res. 2002;42(5):565–75. doi:10.1016/s0042-6989(01)00305-4.
  • Ivanov IV, Mullen KT. The role of local features in shape discrimination of contour- and surface-defined radial frequency patterns at low contrast. Vision Res. 2012;52(1):1–10. doi:10.1016/j.visres.2011.10.002.
  • Wang YZ, Morale SE, Cousins R, Birch EE. Course of development of global hyperacuity over lifespan. Optom Vis Sci. 2009;86(6):695–700. doi:10.1097/OPX.0b013e3181a7b0ff.
  • Jakel F, Wichmann FA. Spatial four-alternative forced-choice method is the preferred psychophysical method for naive observers. J Vis. 2006;6(11):1307–22. doi:10.1167/6.11.13.
  • Hjortdal JO, Erdmann L, Bek T. Fourier analysis of video-keratographic data. A tool for separation of spherical, regular astigmatic and irregular astigmatic corneal power components. Ophthalmic Physiol Opt. 1995;15:171–85.
  • Oshika T, Tomidokoro A, Maruo K, Tokunaga T, Miyata N. Quantitative evaluation of irregular astigmatism by fourier series harmonic analysis of videokeratography data. Invest Ophthalmol Vis Sci. 1998;39:705–09.
  • Wang J, Yang D, Bi H, Du B, Lin W, Gu T, Zhang B, Wei R. A new method to analyze the relative corneal refractive power and its association to myopic progression control with orthokeratology. Transl Vis Sci Technol. 2018;7(6):17. doi:10.1167/tvst.7.4.7.
  • Guirao A, Artal P. Corneal wave aberration from videokeratography: accuracy and limitations of the procedure. J Opt Soc Am A Opt Image Sci Vis. 2000;17(6):955–65. doi:10.1364/josaa.17.000955.
  • Schwiegerling J, Greivenkamp JE. Using corneal height maps and polynomial decomposition to determine corneal aberrations. Optom Vis Sci. 1997;74(11):906–16. doi:10.1097/00006324-199711000-00024.
  • Su B, Zhang B, Huang J, Xie W, Wu Z, Lin M, Chen Z, Wu H, Jiang J, Lu F. The effect of transient glare on shape discrimination threshold in myopic adults. Clin Exp Optom. 2018;101(2):220–24. doi:10.1111/cxo.12616.
  • Pelli DG. The videotoolbox software for visual psychophysics: transforming numbers into movies. Spat Vis. 1997;10:437–42.
  • Brainard DH. The psychophysics toolbox. Spat Vis. 1997;10:433–36.
  • Nancy C, Daniel K. Clinical procedures for ocular examination. 4th ed. McGraw-Hill Education. doi:10.1036/9780071849197.
  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC. Nlme: linear and nonlinear mixed effects models, 2015. R Package Version. 2016;3:103.
  • Rajeev N, Tan E, Liyana R, Metha A. Shape discrimination thresholds among subjects with emmetropia and corrected myopia. Clin Exp Optom. 2015;98(4):353–58. doi:10.1111/cxo.12249.
  • Clifford CW, Webster MA, Stanley GB, Stocker AA, Kohn A, Sharpee TO, Schwartz O. Visual adaptation: neural, psychological and computational aspects. Vision Res. 2007;47(25):3125–31. doi:10.1016/j.visres.2007.08.023.
  • Welch RB Perceptual modification: adapting to altered sensory environments. In: Welch RB, editor. Perceptual modification: adapting to altered sensory environments. Perceptual modification; 1978/01/01/: Academic Press; 1978. p. 346.
  • Smithson H, Zaidi Q. Colour constancy in context: roles for local adaptation and levels of reference. J Vis. 2004;4(9):693–710. doi:10.1167/4.9.3.
  • Webster MA. Adaptation and visual coding. J Vis. 2011;11:5. doi:10.1167/11.5.3.
  • Belmore SC, Shevell SK. Very-long-term chromatic adaptation: test of gain theory and a new method. Vis Neurosci. 2008;25(3):411–14. doi:10.1017/S0952523808080450.
  • Belmore SC, Shevell SK. Very-long-term and short-term chromatic adaptation: are their influences cumulative? Vision Res. 2011;51(3):362–66. doi:10.1016/j.visres.2010.11.011.
  • Delahunt PB, Webster MA, Ma L, Werner JS. Long-term renormalization of chromatic mechanisms following cataract surgery. Vis Neurosci. 2004;21:301–07.
  • Eisner A, Enoch JM. Some effects of 1 week’s monocular exposure to long-wavelength stimuli. Percept Psychophys. 1982;31(2):169–74. doi:10.3758/bf03206217.
  • Neitz J, Carroll J, Yamauchi Y, Neitz M, Williams DR. Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron. 2002;35(4):783–92. doi:10.1016/s0896-6273(02)00818-8.
  • Bao M, Engel SA. Distinct mechanism for long-term contrast adaptation. Proc Natl Acad Sci U S A. 2012;109(15):5898–903. doi:10.1073/pnas.1113503109.
  • Bao M, Fast E, Mesik J, Engel S. Distinct mechanisms control contrast adaptation over different timescales. J Vis. 2013;13(10). doi:10.1167/13.10.14.
  • Kwon M, Legge GE, Fang F, Cheong AM, He S. Adaptive changes in visual cortex following prolonged contrast reduction. J Vis. 2009;9(2):20.21–16. doi:10.1167/9.2.20.
  • Adams WJ, Banks MS, van Ee R. Adaptation to three-dimensional distortions in human vision. Nat Neurosci. 2001;4(11):1063–64. doi:10.1038/nn729.
  • Habtegiorgis SW, Rifai K, Lappe M, Wahl S. Adaptation to skew distortions of natural scenes and retinal specificity of its aftereffects. Front Psychol. 2017;8(1158). doi:10.3389/fpsyg.2017.01158.
  • Yehezkel O, Sagi D, Sterkin A, Belkin M, Polat U. Learning to adapt: dynamics of readaptation to geometrical distortions. Vision Res. 2010;50(16):1550–58. doi:10.1016/j.visres.2010.05.014.
  • Meister DJ, Fisher SW. Progress in the spectacle correction of presbyopia. Part 1: design and development of progressive lenses. Clin Exp Optom. 2008;91(3):240–50. doi:10.1111/j.1444-0938.2007.00245.x.
  • Sheedy J, Andre B. Prescribing multifocal lenses. In: Tasman W, E. J, editors. Duane’s clinical ophthalmology. Philadelphia, PA: Lippincott-Raven; 2005. p. 1–16.
  • Villegas EA, Artal P. Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions. Optom Vis Sci. 2003;80(2):106–14. doi:10.1097/00006324-200302000-00006.
  • Salmela VR, Henriksson L, Vanni S. Radial frequency analysis of contour shapes in the visual cortex. PLoS Comput Biol. 2016;12(2):e1004719. doi:10.1371/journal.pcbi.1005154.
  • Schmidtmann G, Kingdom FAA. Nothing more than a pair of curvatures: A common mechanism for the detection of both radial and non-radial frequency patterns. Vision Res. 2017;134(18–25). doi:10.1016/j.visres.2017.03.005.
  • Flynn OJ, Jeffrey BG. Scotopic contour and shape discrimination using radial frequency patterns. J Vis. 2019;19(2):7. doi:10.1167/19.2.7.
  • Slugocki M, Sekuler AB, Bennett PJ. Phase-selective masking with radial frequency contours. Vision Res. 2019;154(1–13). doi:10.1016/j.visres.2018.10.013.
  • Jeffrey BG, Wang YZ, Birch EE. Circular contour frequency in shape discrimination. Vision Res. 2002;42(25):2773–79. doi:10.1016/s0042-6989(02)00332-2.
  • Rakic P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature. 1976;261(5560):467–71. doi:10.1038/261467a0.
  • Batardiere A, Barone P, Knoblauch K, Giroud P, Berland M, Dumas AM, Kennedy H. Early specification of the hierarchical organization of visual cortical areas in the macaque monkey. Cereb Cortex. 2002;12(5):453–65. doi:10.1093/cercor/12.5.453.
  • Zhang B, Zheng J, Watanabe I, Maruko I, Bi H, Smith EL, 3rd, Chino Y. Delayed maturation of receptive field center/surround mechanisms in v2. Proc Natl Acad Sci U S A. 2005;102(16):5862–67. doi:10.1073/pnas.0501815102.
  • Wang YZ. Effects of aging on shape discrimination. Optom Vis Sci. 2001;78(6):447–54. doi:10.1097/00006324-200106000-00019.
  • Artal P, Chen L, Fernandez EJ, Singer B, Manzanera S, Williams DR. Neural compensation for the eye’s optical aberrations. J Vis. 2004;4(4):281–87. doi:10.1167/4.4.4.
  • Chen L, Artal P, Gutierrez D, Williams DR. Neural compensation for the best aberration correction. J Vis. 2007;7(10):9.1–9. doi:10.1167/7.10.9.
  • Villegas EA, Alcon E, Artal P. Optical quality of the eye in subjects with normal and excellent visual acuity. Invest Ophthalmol Vis Sci. 2008;49(10):4688–96. doi:10.1167/iovs.08-2316.
  • Lorente-Velazquez A, Nieto-Bona A, Collar CV, Mesa AG. Straylight and contrast sensitivity after corneal refractive therapy. Optom Vis Sci. 2011;88(10):1245–51. doi:10.1097/OPX.0b013e3182271449.
  • Lorente-Velazquez A, Gonzalez Mesa A, Gutierrez JR, Villa-Collar C, Nieto-Bona A. Long-term changes in straylight induced by corneal refractive therapy: A pilot study. Cont Lens Anterior Eye. 2014;37(3):144–48. doi:10.1016/j.clae.2013.09.003.
  • Tian M, Ma P, Mu G. Prospective cohort comparison of visual acuity and contrast sensitivity between femto laser in situ keratomileusis and orthokeratology for low-to-moderate myopia. Eye Contact Lens. 2018;44(Suppl 1):S194–s198. doi:10.1097/ICL.0000000000000371.
  • Chen T, Su B, Chen Z, Tong J, Bedell H, Song Z, Zhang B. The associations among metamorphopsia, orientation discrimination threshold, and retinal layer thickness in patients with idiopathic epiretinal membrane. Curr Eye Res. 2018;43(9):1151–59. doi:10.1080/02713683.2018.1481515.
  • He JC, Gwiazda J, Thorn F, Held R. Wave-front aberrations in the anterior corneal surface and the whole eye. J Opt Soc Am A Opt Image Sci Vis. 2003;20(7):1155–63. doi:10.1364/josaa.20.001155.
  • Gobbe M, Reinstein DZ, Archer TJ. Lasik-induced aberrations: comparing corneal and whole-eye measurements. Optom Vis Sci. 2015;92(4):447–55. doi:10.1097/OPX.0000000000000557.
  • Gifford P, Li M, Lu H, Miu J, Panjaya M, Swarbrick HA. Corneal versus ocular aberrations after overnight orthokeratology. Optom Vis Sci. 2013;90(5):439–47. doi:10.1097/OPX.0b013e31828ec594.
  • McAlinden C, Lipson M. Orthokeratology and contact lens quality of life questionnaire (ocl-qol). Eye Contact Lens. 2018;44(5):279–85. doi:10.1097/ICL.0000000000000451.
  • Hess RF, Wang YZ, Dakin SC. Are judgements of circularity local or global? Vision Res. 1999;39(26):4354–60. doi:10.1016/s0042-6989(99)00153-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.