428
Views
34
CrossRef citations to date
0
Altmetric
Cornea, Limbus & Ocular Surface

Optimization of Oxygen Dynamics, UV-A Delivery, and Drug Formulation for Accelerated Epi-On Corneal Crosslinking

, , , , , , , & show all
Pages 450-458 | Received 29 Jul 2019, Accepted 16 Sep 2019, Published online: 02 Oct 2019

References

  • Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–27. doi:10.1016/S0002-9394(02)02220-1.
  • Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998 Jan;66(1):97–103. doi:10.1006/exer.1997.0463.
  • Hersh PS, Stulting RD, Muller D, Durrie DS, Rajpal RK. United States multicenter clinical trial of corneal collagen crosslinking for keratoconus treatment. Ophthalmology. 2017;124(9):1259–70. doi:10.1016/j.ophtha.2017.03.052.
  • Hersh PS, Stulting RD, Muller D, Durrie DS, Rajpal RK. U.S. multicenter clinical trial of corneal collagen crosslinking for treatment of corneal ectasia after refractive surgery. Ophthalmology. 2017;124(10):1475–84. doi:10.1016/j.ophtha.2017.05.036.
  • Kanellopoulos AJ. Novel myopic refractive correction with transepithelial very high fluence cross-linking applied in a customized pattern: early results of a feasibility study. Clin Ophthalmol. 2014;8:1–6.
  • Lim WK, Da Soh Z, Choi HKY, Theng JTS. Epithelium-on photorefractive intrastromal cross-linking (PiXL) for reduction of low myopia. Clin Ophthalmol. 2017;11:1205–11. doi:10.2147/OPTH.S137712.
  • Elling M, Kersten-gomez I, Dick HB. Photorefractive intrastromal corneal cross-linking for the treatment of refractive errors: six-month interim findings. J Cart Refract Surg. 2017;43(6):789–95. doi:10.1016/j.jcrs.2017.03.036.
  • Febo ME, Kersten-gomez I, Dick HB. Photorefractive intrastromal corneal crosslinking for treatment of myopic refractive error: findings from 12-month prospective study using an epithelium-off protocol. J Cart Refract Surg. 2018;44(4):487–95. doi:10.1016/j.jcrs.2018.01.022.
  • El Hout S, Cassagne M, Sales de Gauzy T, Galiacy S, Malecaze F, Fournié P. Transepithelial photorefractive intrastromal corneal crosslinking versus photorefractive keratectomy in low myopia. J Cataract Refract Surg. 2019;45(4):427–36. doi:10.1016/j.jcrs.2018.11.008.
  • Nordström M, Schiller M, Fredriksson A, Behndig A. Refractive improvements and safety with topography-guided corneal crosslinking for keratoconus: 1-year results. Br J Ophthalmol. 2017 Jul;101(7):920–925. doi:10.1136/bjophthalmol-2016-309210.
  • Cassagne M, Pierné K, Galiacy SD, Asfaux-Marfaing M-P, Fournié P, Malecaze F. Customized topography-guided corneal collagen cross-linking for keratoconus. J Refract Surg. 2017;33(5):290–97. doi:10.3928/1081597X-20170201-02.
  • Mazzotta C, Moramarco A, Traversi C, Baiocchi S, Iovieno A, Fontana L. Accelerated corneal collagen cross-linking using topography-guided UV-A energy emission: preliminary clinical and morphological outcomes. J Ophthalmol. 2016;2016:1–10. doi:10.1155/2016/2031031.
  • Seiler TG, Fischinger I, Koller T, Zapp D, Frueh BE, Seiler T. Customized corneal cross-linking: one-year results. Am J Ophthalmol. 2016;166:14–21. doi:10.1016/j.ajo.2016.02.029.
  • ShettyR, PahujaN, RoshanT, DeshmukhR, FrancisM, GhoshA, Sinha RoyA. Customized corneal crosslinking using different UVA beam profiles customized corneal crosslinking using different UVA beam profiles. J Refract Surg. 2017;33(10):676–82. doi:10.3928/1081597X-20170621-07.
  • Koppen C, Wouters K, Mathysen D, Rozema J, Tassignon M-J. Refractive and topographic results of benzalkonium chloride-assisted transepithelial crosslinking. J Cataract Refract Surg. 2012 Jun;38(6):1000–05. doi:10.1016/j.jcrs.2012.01.024.
  • Alhamad TA, O’Brart DPS, O’Brart NAL, Meek KM. Evaluation of transepithelial stromal riboflavin absorption with enhanced riboflavin solution using spectrophotometry. J Cataract Refract Surg. 2012 May;38(5):884–89. doi:10.1016/j.jcrs.2011.11.049.
  • Raiskup F, Pinelli R, Spoerl E. Riboflavin osmolar modification for transepithelial corneal cross-linking. Curr Eye Res. 2012;37(3):234–38. doi:10.3109/02713683.2011.637656.
  • Gatzioufas Z, Sabatino F, Angunawela R. Tetracaine-enhanced transepithelial corneal collagen crosslinking. J Cataract Refract Surg. 2016;42(7):1106. doi:10.1016/j.jcrs.2016.06.021.
  • Torricelli AAM, Ford MR, Singh V, Santhiago MR, Dupps WJ, Wilson SE. BAC-EDTA transepithelial riboflavin-UVA crosslinking has greater biomechanical stiffening effect than standard epithelium-off in rabbit corneas. Exp Eye Res. 2014 Aug;125:114–17. doi:10.1016/j.exer.2014.06.001.
  • Spadea L, Mencucci R. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas. Clin Ophthalmol. 2012;6(1):1785–92. doi:10.2147/OPTH.S37335.
  • Lesniak SP, Hersh PS. Transepithelial corneal collagen crosslinking for keratoconus: six-month results. J Cataract Refract Surg. 2014 Dec;40(12):1971–79. doi:10.1016/j.jcrs.2014.03.026.
  • Touboul D, Efron N, Smadja D, Praud D, Malet F, Colin J. Corneal confocal microscopy following conventional, transepithelial, and accelerated corneal collagen cross-linking procedures for keratoconus. J Refract Surg. 2012;28(11):769–76. doi:10.3928/1081597X-20121016-01.
  • Al Fayez MF, Alfayez S, Alfayez Y. Transepithelial versus epithelium-off corneal collagen cross-linking for progressive keratoconus: a prospective randomized controlled trial. Cornea. 2015;34 Suppl 1(10):S53–6. doi:10.1097/ICO.0000000000000547.
  • Filippello M, Stagni E, Buccoliero D, Bonfiglio V, Avitabile T. Transepithelial cross-linking in keratoconus patients: confocal analysis. Optom Vis Sci. 2012 Oct;89(10):e1–7. doi:10.1097/OPX.0b013e318264cc62.
  • Zhang X, Sun L, Chen Y, Li M, Tian M, Zhou X. One-year outcomes of pachymetry and epithelium thicknesses after accelerated (45 mW/cm2) transepithelial corneal collagen cross-linking for keratoconus patients. Sci. Rep. 2016 Sep 6;6:32692. doi: 10.1038/srep32692..
  • Artola A, Ruiz-fortes P, Soto-negro R. Clinical outcomes at one year following keratoconus treatment with accelerated transepithelial cross-linking. Int J Ophthalmol. 2017;10(4):652–55. doi:10.18240/ijo.2017.04.10.
  • Shen Y, Jian W, Sun L, Li M, Han T, Son J, Zhou X. One-year follow-up of changes in corneal densitometry after accelerated (45 mW/cm2) transepithelial corneal collagen cross-linking for keratoconus: a retrospective study. Cornea. 2016;35(11):1434–40. doi:10.1097/ICO.0000000000000801.
  • Zhang X, Zhao J, Li M, Tian M, Shen Y, Zhou X. Conventional and transepithelial corneal cross-linking for patients with keratoconus. PLoS One. 2018;13:1–15.
  • Kır MB, Türkyılmaz K, Öner V. Transepithelial high-intensity cross-linking for the treatment of progressive keratoconus: 2-year outcomes. Curr Eye Res. 2017;42(1):28–31. doi:10.3109/02713683.2016.1148742.
  • Vinciguerra P, Randleman JB, Romano V, Legrottaglie EF, Rosetta P, Camesasca FI, Piscopo R, Azzolini C, Vinciguerra R. Transepithelial Iontophoresis corneal collagen cross-linking for progressive keratoconus: initial clinical outcomes. J Refract Surg. 2014;30(11):746–53. doi:10.3928/1081597X-20141021-06.
  • Torres-Netto EA, Kling S, Hafezi N, Vinciguerra P, Randleman JB, Hafezi F. Oxygen diffusion may limit the biomechanical effectiveness of Iontophoresis-assisted transepithelial corneal cross-linking. J Refract Surg. 2018;34(11):768–74. doi:10.3928/1081597X-20180830-01.
  • Mazzotta C, Bagaglia SA, Vinciguerra R, Ferrise M, Vinciguerra P. Enhanced-fluence pulsed-light iontophoresis corneal cross-linking: 1-year morphological and clinical results. J Refract Surg. 2018;34(7):438–44. doi:10.3928/1081597X-20180515-02.
  • Cassagne M, Laurent C, Rodrigues M, Galinier A, Spoerl E, Galiacy SD, Soler V, Fourni P, Malecaze F. Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Investig Ophthalmol Vis Sci. 2016;57(2):594–603. doi:10.1167/iovs.13-12595.
  • Gore DM, O’Brart DP, French P, Dunsby C, Allan BD. A comparison of different corneal iontophoresis protocols for promoting transepithelial riboflavin penetration. Invest Ophthalmol Vis Sci. 2015;56(13):7908–14. doi:10.1167/iovs.15-17569.
  • Arboleda A, Kowalczuk L, Savoldelli M, Klein C, Ladraa S, Naud MC, Aguilar MC, Parel JM, Behar-Cohen F. Evaluating in vivo delivery of riboflavin with Coulomb-controlled iontophoresis for corneal collagen cross- linking: a pilot study. Investig Ophthalmol Vis Sci. 2014;55(4):2731–38. doi:10.1167/iovs.14-13931.
  • Kamaev P, Friedman MD, Sherr E, Muller D. Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci. 2012 Mar;53(4):2360–67. doi:10.1167/iovs.11-9385.
  • Muller D, Kamaev P, Friedman M, Sherr E, Eddington W. Accelerated UVA-RF corneal cross-linking through pulsed UVA Illumination and oxygen rich environments. Invest Ophthalmol Vis Sci. 2013 Jun;54(15):5281.
  • Kamaev P, Smirnov M, Friedman M, Sherr E, Muller D. Aggregation and photoreduction in anaerobic solutions of flavin mononucleotide. J Photochem Photobiol A Chem. 2015;310:60–65. doi:10.1016/j.jphotochem.2015.04.025.
  • Richoz O, Hammer A, Tabibian D, Gatzioufas Z, Hafezi F. The biomechanical effect of corneal collagen cross-linking (CXL) with Riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol. 2013 Nov;2(7):6. doi:10.1167/tvst.2.7.6.
  • Kling S, Richoz OO, Hammer A, Tabibian D, Jacob S, Agarwal A, Hafezi F. Increased biomechanical efficacy of corneal cross-linking in thin corneas due to higher oxygen availability. J Refract Surg. 2015;31(12):840–46. doi:10.3928/1081597X-20151111-08.
  • Stulting RD, Trattler WB, Woolfson JM, Rubinfeld RS. Corneal crosslinking without epithelial removal. J Cataract Refract Surg. 2018;44(11):1363–70.
  • Rubinfeld RS, Stulting RD, Gum GG, Talamo JH. Quantitative analysis of corneal stromal riboflavin concentration without epithe- lial removal. J Cataract Refract Surg. 2018 Feb;44(2):237–242.
  • Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness in the normal cornea: three-dimensional display with very high frequency ultrasound. J Refract Surg. 2008;24(6):571–81. doi:10.3928/1081597X-20080601-05.
  • Freeman RD. Oxygen consumption by the component layers of the cornea. J Physiol. 1972;225:15–32. doi:10.1113/jphysiol.1972.sp009927.
  • Diakonis VF, Likht NY, Yesilirmak N, Delgado D, Karatapanis AE, Yesilirmak Y, Fraker C, Yoo SH, Ziebarth NM. Corneal elasticity after oxygen enriched high intensity corneal cross linking assessed using atomic force microscopy. Exp Eye Res. 2016 Dec;153:51–55. doi:10.1016/j.exer.2016.10.013.
  • Kolozsva L, No A, Bor Z. UV absorbance of the human cornea in the 240- to 400-nm. Invest Ophthalmol Vis Sci. 2002 Jul;43(7):2165–8.
  • Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T. Safety of UVA-riboflavin cross-linking of the cornea. Cornea. 2007 May;26(4):385–89. doi:10.1097/ICO.0b013e3180334f78.
  • Wollensak G, Aurich H, Wirbelauer C, Sel S. Significance of the riboflavin film in corneal collagen crosslinking. J Cataract Refract Surg. 2010 Jan;36(1):114–20. doi:10.1016/j.jcrs.2009.07.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.