1,611
Views
25
CrossRef citations to date
0
Altmetric
Anterior Segment

Regeneration of the Corneal Endothelium

ORCID Icon &
Pages 303-312 | Received 08 Jul 2019, Accepted 28 Nov 2019, Published online: 17 Dec 2019

References

  • Nishida T, Saika S. Cornea and Sclera: anatomy and physiology. Cornea. 3rd edn. 2011;1:3–24.
  • Joyce NC. Proliferative capacity of corneal endothelial cells. Exp Eye Res. 2012;95(1):16–23. doi:10.1016/j.exer.2011.08.014.
  • Tan DT, Dart JK, Holland EJ, Kinoshita S. Corneal transplantation. Lancet. 2012;379(9827):1749–61. doi:10.1016/S0140-6736(12)60437-1.
  • Melles GR, Eggink FA, Lander F, Pels E, Rietveld FJ, Beekhuis WH, Binder PS. A surgical technique for posterior lamellar keratoplasty. Cornea. 1998;17(6):618–26. doi:10.1097/00003226-199811000-00010.
  • Melles GR, Lander F, Nieuwendaal C. Sutureless, posterior lamellar keratoplasty: a case report of a modified technique. Cornea. 2002;21(3):325–27. doi:10.1097/00003226-200204000-00018.
  • Melles GR, Wijdh RH, Nieuwendaal CP. A technique to excise the descemet membrane from a recipient cornea (descemetorhexis). Cornea. 2004;23(3):286–88. doi:10.1097/00003226-200404000-00011.
  • Price FW Jr., Price MO. Descemet’s stripping with endothelial keratoplasty in 50 eyes: a refractive neutral corneal transplant. J Refract Surg. 2005;21(4):339–45. doi:10.3928/1081-597X-20050701-07.
  • Gorovoy MS. Descemet-stripping automated endothelial keratoplasty. Cornea. 2006;25(8):886–89. doi:10.1097/01.ico.0000214224.90743.01.
  • Price MO, Price FW Jr. Endothelial cell loss after descemet stripping with endothelial keratoplasty influencing factors and 2-year trend. Ophthalmology. 2008;115(5):857–65. doi:10.1016/j.ophtha.2007.06.033.
  • Terry MA, Shamie N, Chen ES, Phillips PM, Shah AK, Hoar KL, Friend DJ. Endothelial keratoplasty for Fuchs’ dystrophy with cataract: complications and clinical results with the new triple procedure. Ophthalmology. 2009;116(4):631–39. doi:10.1016/j.ophtha.2008.11.004.
  • Dapena I, Ham L, Melles GR. Endothelial keratoplasty: DSEK/DSAEK or DMEK–the thinner the better? Curr Opin Ophthalmol. 2009;20(4):299–307. doi:10.1097/ICU.0b013e32832b8d18.
  • Ham L, Dapena I, van Luijk C, van der Wees J, Melles GR. Descemet membrane endothelial keratoplasty (DMEK) for Fuchs endothelial dystrophy: review of the first 50 consecutive cases. Eye (Lond). 2009;23(10):1990–98. doi:10.1038/eye.2008.393.
  • Ham L, van Luijk C, Dapena I, Wong TH, Birbal R, van der Wees J, Melles GR. Endothelial cell density after descemet membrane endothelial keratoplasty: 1- to 2-year follow-up. Am J Ophthalmol. 2009;148(4):521–27. doi:10.1016/j.ajo.2009.04.025.
  • Baratz KH, McLaren JW, Maguire LJ, Patel SV. Corneal haze determined by confocal microscopy 2 years after Descemet stripping with endothelial keratoplasty for Fuchs corneal dystrophy. Arch Ophthalmol. 2012;130(7):868–74. doi:10.1001/archophthalmol.2012.73.
  • Patel SV. Graft survival and endothelial outcomes in the new era of endothelial keratoplasty. Exp Eye Res. 2012;95(1):40–47. doi:10.1016/j.exer.2011.05.013.
  • Tourtas T, Laaser K, Bachmann BO, Cursiefen C, Kruse FE. Descemet membrane endothelial keratoplasty versus Descemet stripping automated endothelial keratoplasty. Am J Ophthalmol. 2012;153(6):1082–1090 e1082. doi:10.1016/j.ajo.2011.12.012.
  • Kruse FE, Schrehardt US, Tourtas T. Optimizing outcomes with Descemetʼs membrane endothelial keratoplasty. Curr Opin Ophthalmol. 2014;25(4):325–34. doi:10.1097/ICU.0000000000000072.
  • Hamzaoglu EC, Straiko MD, Mayko ZM, Sales CS, Terry MA. The first 100 eyes of standardized descemet stripping automated endothelial keratoplasty versus standardized descemet membrane endothelial keratoplasty. Ophthalmology. 2015;122(11):2193–99. doi:10.1016/j.ophtha.2015.07.003.
  • Singh A, Zarei-Ghanavati M, Avadhanam V, Liu C. Systematic review and meta-analysis of clinical outcomes of descemet membrane endothelial keratoplasty versus descemet stripping endothelial keratoplasty/descemet stripping automated endothelial keratoplasty. Cornea. 2017;36(11):1437–43. doi:10.1097/ICO.0000000000001320.
  • Brockmann T, Brockmann C, Maier A-K, Schroeter J, Pleyer U, Bertelmann E, Joussen AM, Torun N. Clinicopathology of graft detachment after Descemet’s membrane endothelial keratoplasty. Acta Ophthalmol. 2014;92(7):e556–561. doi:10.1111/aos.12419.
  • Brockmann T, Brockmann C, Maier A-K, Gundlach E, Schroeter J, Bertelmann E, Joussen AM, Torun N. Descemet membrane endothelial keratoplasty for graft failure after descemet stripping endothelial keratoplasty: clinical results and histopathologic findings. JAMA Ophthalmol. 2015;133(7):813–19. doi:10.1001/jamaophthalmol.2015.0906.
  • Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, Thuret G. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134(2):167–73. doi:10.1001/jamaophthalmol.2015.4776.
  • Deng SX, Lee WB, Hammersmith KM, Kuo AN, Li JY, Shen JF, Weikert MP, Shtein RM. Descemet membrane endothelial keratoplasty: safety and outcomes: a report by the American Academy of Ophthalmology. Ophthalmology. 2018;125(2):295–310. doi:10.1016/j.ophtha.2017.08.015.
  • Brockmann T, Pilger D, Brockmann C, Maier AKB, Bertelmann E, Torun N. Predictive factors for clinical outcomes after primary descemet’s membrane endothelial keratoplasty for Fuchs’ endothelial dystrophy. Curr Eye Res. 2019;44(2):147–53. doi:10.1080/02713683.2018.1538459.
  • Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, Yamamoto Y, Nakamura T, Inatomi T, Bush J, et al. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018;378:995–1003. doi:10.1056/NEJMoa1712770.
  • Jumblatt MM, Maurice DM, McCulley JP. Transplantation of tissue-cultured corneal endothelium. Invest Ophthalmol Vis Sci. 1978;17:1135–41.
  • Gospodarowicz D, Greenburg G, Alvarado J. Transplantation of cultured bovine corneal endothelial cells to rabbit cornea: clinical implications for human studies. Proc Natl Acad Sci U S A. 1979;76(1):464–68. doi:10.1073/pnas.76.1.464.
  • Ishino Y, Sano Y, Nakamura T, Connon CJ, Rigby H, Fullwood NJ, Kinoshita S. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci. 2004;45(3):800–06. doi:10.1167/iovs.03-0016.
  • Sumide T, Nishida K, Yamato M, Ide T, Hayashida Y, Watanabe K, Yang J, Kohno C, Kikuchi A, Maeda N, et al. Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces. Faseb J. 2006;20(2):392–94. doi:10.1096/fj.04-3035fje.
  • Hitani K, Yokoo S, Honda N, Usui T, Yamagami S, Amano S. Transplantation of a sheet of human corneal endothelial cell in a rabbit model. Mol Vis. 2008;14:1–9.
  • Eye Bank Association of America (EBAA). Eye Banking Statistical Report. Washington, DC; 2018.
  • Yoshida J, Yokoo S, Oshikata-Miyazaki A, Amano S, Takezawa T, Yamagami S. Transplantation of human corneal endothelial cells cultured on bio-engineered collagen vitrigel in a rabbit model of corneal endothelial dysfunction. Curr Eye Res. 2017;42(11):1420–25. doi:10.1080/02713683.2017.1351568.
  • Mimura T, Yamagami S, Yokoo S, Usui T, Tanaka K, Hattori S, Irie S, Miyata K, Araie M, Amano S. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest Ophthalmol Vis Sci. 2004;45(9):2992–97. doi:10.1167/iovs.03-1174.
  • Koizumi N, Sakamoto Y, Okumura N, Okahara N, Tsuchiya H, Torii R, Cooper LJ, Ban Y, Tanioka H, Kinoshita S. Cultivated corneal endothelial cell sheet transplantation in a primate model. Invest Ophthalmol Vis Sci. 2007;48(10):4519–26. doi:10.1167/iovs.07-0567.
  • Koizumi N, Okumura N, Kinoshita S. Development of new therapeutic modalities for corneal endothelial disease focused on the proliferation of corneal endothelial cells using animal models. Exp Eye Res. 2012;95(1):60–67. doi:10.1016/j.exer.2011.10.014.
  • Peh GSL, Ang H-P, Lwin CN, Adnan K, George BL, Seah X-Y, Lin S-J, Bhogal M, Liu Y-C, Tan DT, et al. Regulatory compliant tissue-engineered human corneal endothelial grafts restore corneal function of rabbits with bullous keratopathy. Sci Rep. 2017;7(1):14149. doi:10.1038/s41598-017-14723-z.
  • Peh GSL, Ong HS, Adnan K, Ang H-P, Lwin CN, Seah X-Y, Lin S-J, Mehta JS. Functional evaluation of two corneal endothelial cell-based therapies: tissue-engineered construct and cell injection. Sci Rep. 2019;9(1):6087. doi:10.1038/s41598-019-42493-3.
  • Wang T-J, Wang I-J, Lu J-N, Young T-H. Novel chitosan-polycaprolactone blends as potential scaffold and carrier for corneal endothelial transplantation. Mol Vis. 2012;18:255–64.
  • Kimoto M, Shima N, Yamaguchi M, Hiraoka Y, Amano S, Yamagami S. Development of a bioengineered corneal endothelial cell sheet to fit the corneal curvature. Invest Ophthalmol Vis Sci. 2014;55(4):2337–43. doi:10.1167/iovs.13-13167.
  • Rizwan M, Peh GSL, Ang H-P, Lwin NC, Adnan K, Mehta JS, Tan WS, Yim EKF. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Biomaterials. 2017;120:139–54. doi:10.1016/j.biomaterials.2016.12.026.
  • Mimura T, Shimomura N, Usui T, Noda Y, Kaji Y, Yamgami S, Amano S, Miyata K, Araie M. Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet’s membrane. Exp Eye Res. 2003;76(6):745–51. doi:10.1016/S0014-4835(03)00057-5.
  • Mimura T, Yamagami S, Usui T, Ishii Y, Ono K, Yokoo S, Funatsu H, Araie M, Amano S. Long-term outcome of iron-endocytosing cultured corneal endothelial cell transplantation with magnetic attraction. Exp Eye Res. 2005;80(2):149–57. doi:10.1016/j.exer.2004.08.021.
  • Patel SV, Bachman LA, Hann CR, Bahler CK, Fautsch MP. Human corneal endothelial cell transplantation in a human ex vivo model. Invest Ophthalmol Vis Sci. 2009;50(5):2123–31. doi:10.1167/iovs.08-2653.
  • Moysidis SN, Alvarez-Delfin K, Peschansky VJ, Salero E, Weisman AD, Bartakova A, Raffa GA, Merkhofer RM Jr., Kador KE, Kunzevitzky NJ, et al. Magnetic field-guided cell delivery with nanoparticle-loaded human corneal endothelial cells. Nanomedicine. 2015;11(3):499–509. doi:10.1016/j.nano.2014.12.002.
  • Xia X, Atkins M, Dalal R, Kuzmenko O, Chang K-C, Sun CB, Benatti CA, Rak DJ, Nahmou M, Kunzevitzky NJ, et al. Magnetic human corneal endothelial cell transplant: delivery, retention, and short-term efficacy. Invest Ophthalmol Vis Sci. 2019;60(7):2438–48. doi:10.1167/iovs.18-26001.
  • Yokoo S, Yamagami S, Yanagi Y, Uchida S, Mimura T, Usui T, Amano S. Human corneal endothelial cell precursors isolated by sphere-forming assay. Invest Ophthalmol Vis Sci. 2005;46(5):1626–31. doi:10.1167/iovs.04-1263.
  • Yamagami S, Yokoo S, Mimura T, Takato T, Araie M, Amano S. Distribution of precursors in human corneal stromal cells and endothelial cells. Ophthalmology. 2007;114(3):433–39. doi:10.1016/j.ophtha.2006.07.042.
  • Mimura T, Yokoo S, Araie M, Amano S, Yamagami S. Treatment of rabbit bullous keratopathy with precursors derived from cultured human corneal endothelium. Invest Ophthalmol Vis Sci. 2005;46(10):3637–44. doi:10.1167/iovs.05-0462.
  • Mimura T, Yamagami S, Yokoo S, Yanagi Y, Usui T, Ono K, Araie M, Amano S. Sphere therapy for corneal endothelium deficiency in a rabbit model. Invest Ophthalmol Vis Sci. 2005;46(9):3128–35. doi:10.1167/iovs.05-0251.
  • Mimura T, Yamagami S, Usui T, Seiichi S, Honda N, Amano S. Necessary prone position time for human corneal endothelial precursor transplantation in a rabbit endothelial deficiency model. Curr Eye Res. 2007;32(7–8):617–23. doi:10.1080/02713680701530589.
  • Okumura N, Koizumi N, Ueno M, Sakamoto Y, Takahashi H, Tsuchiya H, Hamuro J, Kinoshita S. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am J Pathol. 2012;181(1):268–77. doi:10.1016/j.ajpath.2012.03.033.
  • Okumura N, Sakamoto Y, Fujii K, Kitano J, Nakano S, Tsujimoto Y, Nakamura S, Ueno M, Hagiya M, Hamuro J, et al. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep. 2016;6:26113. doi:10.1038/srep26113.
  • Okumura N, Ueno M, Koizumi N, Sakamoto Y, Hirata K, Hamuro J, Kinoshita S. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci. 2009;50(8):3680–87. doi:10.1167/iovs.08-2634.
  • Bostan C, Theriault M, Forget KJ, Doyon C, Cameron JD, Proulx S, Brunette I. In vivo functionality of a corneal endothelium transplanted by cell-injection therapy in a Feline model. Invest Ophthalmol Vis Sci. 2016;57(4):1620–34. doi:10.1167/iovs.15-17625.
  • Baum JL, Niedra R, Davis C, Yue BY. Mass culture of human corneal endothelial cells. Arch Ophthalmol. 1979;97(6):1136–40. doi:10.1001/archopht.1979.01020010590018.
  • Joyce NC, Navon SE, Roy S, Zieske JD. Expression of cell cycle-associated proteins in human and rabbit corneal endothelium in situ. Invest Ophthalmol Vis Sci. 1996;37:1566–75.
  • Joyce NC, Meklir B, Joyce SJ, Zieske JD. Cell cycle protein expression and proliferative status in human corneal cells. Invest Ophthalmol Vis Sci. 1996;37:645–55.
  • Joyce NC, Harris DL, Zieske JD. Mitotic inhibition of corneal endothelium in neonatal rats. Invest Ophthalmol Vis Sci. 1998;39:2572–83.
  • Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22(3):359–89. doi:10.1016/S1350-9462(02)00065-4.
  • Kikuchi M, Harris DL, Obara Y, Senoo T, Joyce NC. p27kip1 antisense-induced proliferative activity of rat corneal endothelial cells. Invest Ophthalmol Vis Sci. 2004;45(6):1763–70. doi:10.1167/iovs.03-0885.
  • Joyce NC. Cell cycle status in human corneal endothelium. Exp Eye Res. 2005;81(6):629–38. doi:10.1016/j.exer.2005.06.012.
  • Konomi K, Zhu C, Harris D, Joyce NC. Comparison of the proliferative capacity of human corneal endothelial cells from the central and peripheral areas. Invest Ophthalmol Vis Sci. 2005;46(11):4086–91. doi:10.1167/iovs.05-0245.
  • Kikuchi M, Zhu C, Senoo T, Obara Y, Joyce NC. p27kip1 siRNA induces proliferation in corneal endothelial cells from young but not older donors. Invest Ophthalmol Vis Sci. 2006;47(11):4803–09. doi:10.1167/iovs.06-0521.
  • Senoo T, Joyce NC. Cell cycle kinetics in corneal endothelium from old and young donors. Invest Ophthalmol Vis Sci. 2000;41:660–67.
  • Zhu C, Joyce NC. Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci. 2004;45(6):1743–51. doi:10.1167/iovs.03-0814.
  • Enomoto K, Mimura T, Harris DL, Joyce NC. Age differences in cyclin-dependent kinase inhibitor expression and rb hyperphosphorylation in human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2006;47(10):4330–40. doi:10.1167/iovs.05-1581.
  • Mimura T, Joyce NC. Replication competence and senescence in central and peripheral human corneal endothelium. Invest Ophthalmol Vis Sci. 2006;47(4):1387–96. doi:10.1167/iovs.05-1199.
  • Kay ED, Cheung CC, Jester JV, Nimni ME, Smith RE. Type I collagen and fibronectin synthesis by retrocorneal fibrous membrane. Invest Ophthalmol Vis Sci. 1982;22:200–12.
  • Kim TY, Kim WI, Smith RE, Kay ED. Role of p27(Kip1) in cAMP- and TGF-beta2-mediated antiproliferation in rabbit corneal endothelial cells. Invest Ophthalmol Vis Sci. 2001;42(13):3142–49.
  • Lee HT, Kay EP. Regulatory role of PI 3-kinase on expression of Cdk4 and p27, nuclear localization of Cdk4, and phosphorylation of p27 in corneal endothelial cells. Invest Ophthalmol Vis Sci. 2003;44(4):1521–28. doi:10.1167/iovs.02-0637.
  • Lee HT, Lee JG, Na M, Kay EP. FGF-2 induced by Interleukin-1β through the action of phosphatidylinositol 3-kinase mediates endothelial mesenchymal transformation in corneal endothelial cells. J Biol Chem. 2004;279(31):32325–32. doi:10.1074/jbc.M405208200.
  • Lee JG, Kay EP. Two populations of p27 use differential kinetics to phosphorylate Ser-10 and Thr-187 via phosphatidylinositol 3-Kinase in response to fibroblast growth factor-2 stimulation. J Biol Chem. 2007;282(9):6444–54. doi:10.1074/jbc.M607808200.
  • Lee JG, Kay EP. Involvement of two distinct ubiquitin E3 ligase systems for p27 degradation in corneal endothelial cells. Invest Ophthalmol Vis Sci. 2008;49(1):189–96. doi:10.1167/iovs.07-0855.
  • Lee JG, Kay EP. PI 3-kinase/Rac1 and ERK1/2 regulate FGF-2-mediated cell proliferation through phosphorylation of p27 at Ser10 by KIS and at Thr187 by Cdc25A/Cdk2. Invest Ophthalmol Vis Sci. 2011;52(1):417–26. doi:10.1167/iovs.10-6140.
  • Hongo A, Okumura N, Nakahara M, Kay EP, Koizumi N. The effect of a p38 mitogen-activated protein kinase inhibitor on cellular senescence of cultivated human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2017;58(9):3325–34. doi:10.1167/iovs.16-21170.
  • Okumura N, Nakano S, Kay EP, Numata R, Ota A, Sowa Y, Sakai T, Ueno M, Kinoshita S, Koizumi N. Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors Y-27632 and Y-39983 during corneal endothelium wound healing. Invest Ophthalmol Vis Sci. 2014;55(1):318–29. doi:10.1167/iovs.13-12225.
  • Peh GS, Adnan K, George BL, Ang H-P, Seah X-Y, Tan DT, Mehta JS. The effects of Rho-associated kinase inhibitor Y-27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep. 2015;5:9167. doi:10.1038/srep09167.
  • Pipparelli A, Arsenijevic Y, Thuret G, Gain P, Nicolas M, Majo F, Connon CJ. ROCK inhibitor enhances adhesion and wound healing of human corneal endothelial cells. PLoS One. 2013;8(4):e62095. doi:10.1371/journal.pone.0062095.
  • Nakahara M, Okumura N, Nakano S, Koizumi N. Effect of a p38 mitogen-activated protein kinase inhibitor on corneal endothelial cell proliferation. Invest Ophthalmol Vis Sci. 2018;59(10):4218–27. doi:10.1167/iovs.18-24394.
  • Okumura N, Kusakabe A, Hirano H, Inoue R, Okazaki Y, Nakano S, Kinoshita S, Koizumi N. Density-gradient centrifugation enables the purification of cultured corneal endothelial cells for cell therapy by eliminating senescent cells. Sci Rep. 2015;5:15005. doi:10.1038/srep15005.
  • Okumura N, Kakutani K, Numata R, Nakahara M, Schlotzer-Schrehardt U, Kruse F, Kinoshita S, Koizumi N. Laminin-511 and −521 enable efficient in vitro expansion of human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2015;56(5):2933–42. doi:10.1167/iovs.14-15163.
  • Okumura N, Kay EP, Nakahara M, Hamuro J, Kinoshita S, Koizumi N, Connon CJ. Inhibition of TGF-β signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine. PLoS One. 2013;8(2):e58000. doi:10.1371/journal.pone.0058000.
  • Toda M, Ueno M, Hiraga A, Asada K, Montoya M, Sotozono C, Kinoshita S, Hamuro J. Production of homogeneous cultured human corneal endothelial cells indispensable for innovative cell therapy. Invest Ophthalmol Vis Sci. 2017;58(4):2011–20. doi:10.1167/iovs.16-20703.
  • Bartakova A, Kuzmenko O, Alvarez-Delfin K, Kunzevitzky NJ, Goldberg JL. A cell culture approach to optimized human corneal endothelial cell function. Invest Ophthalmol Vis Sci. 2018;59(3):1617–29. doi:10.1167/iovs.17-23637.
  • Sipp D. Hope alone is not an outcome: why regulations makes sense for the global stem cell industry. Am J Bioeth. 2010;10(5):33–34. doi:10.1080/15265161003754106.
  • Lysaght T, Campbell AV. Regulating autologous adult stem cells: the FDA steps up. Cell Stem Cell. 2011;9(5):393–96. doi:10.1016/j.stem.2011.09.013.
  • Bartakova A, Alvarez-Delfin K, Weisman AD, Salero E, Raffa GA, Merkhofer RM Jr., Kunzevitzky NJ, Goldberg JL, Identity N. Functional markers for human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(6):2749–62. doi:10.1167/iovs.15-18826.
  • Cheong YK, Ngoh ZX, Peh GS, Ang H-P, Seah X-Y, Chng Z, Colman A, Mehta JS, Sun W. Identification of cell surface markers glypican-4 and CD200 that differentiate human corneal endothelium from stromal fibroblasts. Invest Ophthalmol Vis Sci. 2013;54(7):4538–47. doi:10.1167/iovs.13-11754.
  • Chng Z, Peh GS, Herath WB, Cheng TY, Ang H-P, Toh K-P, Robson P, Mehta JS, Colman A, Emanueli C. High throughput gene expression analysis identifies reliable expression markers of human corneal endothelial cells. PLoS One. 2013;8(7):e67546. doi:10.1371/journal.pone.0067546.
  • Frausto RF, Le DJ, Aldave AJ. Transcriptomic analysis of cultured corneal endothelial cells as a validation for their use in cell replacement therapy. Cell Transplant. 2016;25(6):1159–76. doi:10.3727/096368915X688948.
  • Ueno M, Asada K, Toda M, Hiraga A, Montoya M, Sotozono C, Kinoshita S, Hamuro J. MicroRNA profiles qualify phenotypic features of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(13):5509–17. doi:10.1167/iovs.16-19804.
  • Ueno M, Asada K, Toda M, Nagata K, Sotozono C, Kosaka N, Ochiya T, Kinoshita S, Hamuro J. Concomitant evaluation of a panel of exosome proteins and MiRs for qualification of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(10):4393–402. doi:10.1167/iovs.16-19805.
  • Ueno M, Asada K, Toda M, Schlotzer-Schrehardt U, Nagata K, Montoya M, Sotozono C, Kinoshita S, Hamuro J. Gene signature-based development of ELISA assays for reproducible qualification of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(10):4295–305. doi:10.1167/iovs.16-19806.
  • Okumura N, Ishida N, Kakutani K, Hongo A, Hiwa S, Hiroyasu T, Koizumi N. Development of cell analysis software for cultivated corneal endothelial cells. Cornea. 2017;36(11):1387–94. doi:10.1097/ICO.0000000000001317.
  • Okumura N, Kobayashi K, Ishida N, Kagami T, Hiwa S, Hiroyasu T, Koizumi N. Development of cell analysis software to evaluate fibroblastic changes in cultivated corneal endothelial cells for quality control. Cornea. 2018;37(12):1572–78. doi:10.1097/ICO.0000000000001757.
  • Numa K, Tanaka H, Ueno M, Imai K, Hagiya M, Kitazawa K, Wakimasu K, Inatomi T, Okumura N, Koizumi N, et al. Four-year follow-up after injection of cultured corneal endothelial cells with a ROCK inhibitor for bullous keratopathy. Paper presented at: American Academy of Ophthalmology, 2019 Oct 12-15; San Francisco, USA; 2019.
  • Shah RD, Randleman JB, Grossniklaus HE. Spontaneous corneal clearing after Descemet’s stripping without endothelial replacement. Ophthalmology. 2012;119(2):256–60. doi:10.1016/j.ophtha.2011.07.032.
  • Borkar DS, Veldman P, Colby KA. Treatment of Fuchs endothelial dystrophy by descemet stripping without endothelial keratoplasty. Cornea. 2016;35(10):1267–73. doi:10.1097/ICO.0000000000000915.
  • Iovieno A, Neri A, Soldani AM, Adani C, Fontana L. Descemetorhexis without graft placement for the treatment of fuchs endothelial dystrophy: preliminary results and review of the literature. Cornea. 2017;36(6):637–41. doi:10.1097/ICO.0000000000001202.
  • Moloney G, Petsoglou C, Ball M, Kerdraon Y, Hollhumer R, Spiteri N, Beheregaray S, Hampson J, DʼSouza M, Devasahayam RN. Descemetorhexis without grafting for fuchs endothelial dystrophy-supplementation with topical ripasudil. Cornea. 2017;36(6):642–48. doi:10.1097/ICO.0000000000001209.
  • Davies E, Jurkunas U, Pineda R 2nd. Predictive factors for corneal clearance after descemetorhexis without endothelial keratoplasty. Cornea. 2018;37(2):137–40. doi:10.1097/ICO.0000000000001427.
  • Garcerant D, Hirnschall N, Toalster N, Zhu M, Wen L, Moloney G. Descemetʼs stripping without endothelial keratoplasty. Curr Opin Ophthalmol. 2019;30(4):275–85. doi:10.1097/ICU.0000000000000579.
  • Macsai MS, Shiloach M. Use of topical Rho kinase inhibitors in the treatment of fuchs dystrophy after descemet stripping only. Cornea. 2019;38(5):529–34. doi:10.1097/ICO.0000000000001883.
  • Koizumi N, Okumura N, Ueno M, Nakagawa H, Hamuro J, Kinoshita S. Rho-associated kinase inhibitor eye drop treatment as a possible medical treatment for Fuchs corneal dystrophy. Cornea. 2013;32(8):1167–70. doi:10.1097/ICO.0b013e318285475d.
  • Okumura N, Koizumi N, Kay EP, Ueno M, Sakamoto Y, Nakamura S, Hamuro J, Kinoshita S. The ROCK inhibitor eye drop accelerates corneal endothelium wound healing. Invest Ophthalmol Vis Sci. 2013;54:2493. doi:10.1167/iovs.12-11320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.