300
Views
11
CrossRef citations to date
0
Altmetric
Retina & Optic Nerve

Bilaminar Mechanics of the Human Optic Nerve Sheath

, , , &
Pages 854-863 | Received 22 Aug 2019, Accepted 22 Nov 2019, Published online: 17 Dec 2019

References

  • Demer JL. Optic nerve sheath as a novel mechanical load on the globe in ocular duction. Invest Ophthalmol Vis Sci. 2016;57:1826–38. doi:10.1167/iovs.15-18718.
  • Suh SY, Le A, Shin A, Park J, Demer JL. Progressive deformation of the optic nerve head and peripapillary structures by graded horizontal duction. Invest Ophthalmol Vis Sci. 2017;58:5015–21. doi:10.1167/iovs.17-22596.
  • Demer JL, Clark RA, Suh SY, Giaconi JA, Nouri-Mahdavi K, Law SK, Bonelli L, Coleman AL, Caprioli J. Magnetic resonance imaging of optic nerve traction during adduction in primary open-angle glaucoma with normal intraocular pressure. Invest Ophthalmol Vis Sci. 2017;58:4114–25. doi:10.1167/iovs.17-22093.
  • Apt L. An anatomical reevaluation of rectus muscle insertions. Trans Am Ophthalmol Soc. 1980;78:365–75.
  • Wang YX, Jiang R, Wang NL, Xu L, Jonas JB. Acute peripapillary retinal pigment epithelium changes associated with acute intraocular pressure elevation. Ophthalmology. 2015;122:2022–28. doi:10.1016/j.ophtha.2015.06.005.
  • Fortune B. Pulling and tugging on the retina: mechanical impact of glaucoma beyond the optic nerve head. Inv Ophtalmol Vis Sci. 2019;60:26–35. doi:10.1167/iovs.18-25837.
  • Sibony PA, Hou W. Adduction-Induced deformations evoke peripapillary folds in papilledema. Ophthalmology. 2019;126:912–14. doi:10.1016/j.ophtha.2018.12.043.
  • Robinson DA. Control of eye movements. In: Brooks VB editor. The nervous system, handbook of physiology. Vol. II. Baltimore (MD): Williams & Wilkins; 1981. p. 1275–320.
  • Wu CC, Kowler E. Timing of saccadic eye movements during visual search for multiple targets. J Vis. 2013;3:13.
  • Leclair-Visonneau L, Oudiette D, Gaymard B, Leu-Semenescu S, Arnulf I. Do the eyes scan dream images during rapid eye movement sleep? Evidence from the rapid eye movement sleep behaviour disorder model. Brain. 2010;133:1737–46. doi:10.1093/brain/awq110.
  • Anastasopoulos D, Ziavra N, Hollands M, Bronstein A. Gaze displacement and inter-segmental coordination during large whole body voluntary rotations. Exp Brain Res. 2009;193:323–36. doi:10.1007/s00221-008-1627-y.
  • Tomlinson RD, Bahra PS. Combined eye-head gaze shifts in the primate. II. Interaction between saccades and the vestibuloocular reflex. J Neurophysiol. 1986;56:1558–70. doi:10.1152/jn.1986.56.6.1558.
  • Tomlinson RD, Bahra PS. Combined eye-head gaze shifts in the primate. I Metrics J Neurophysiol. 1986;56:1542–57. doi:10.1152/jn.1986.56.6.1542.
  • Shin A, Yoo L, Park J, Demer JL. Finite element biomechanics of optic nerve sheath traction in adduction. J Biomech Eng. 2017;139(10).
  • Garrity JA. What is the current status of optic nerve sheath fenestration? J Neuroophthalmol. 2016;36:231–34. doi:10.1097/WNO.0000000000000438.
  • Elkington AR, Inman CB, Steart PV, Weller RO. The structure of the lamina cribrosa of the human eye: an immunocytochemical and electron microscopical study. Eye (Lond). 1990;4(Pt 1):42–57. doi:10.1038/eye.1990.5.
  • Spoerl E, Boehm AG, Pillunat LE. The influence of various substances on the biomechanical behavior of lamina cribrosa and peripapillary sclera. Invest Ophthalmol Vis Sci. 2005;46:1286–90. doi:10.1167/iovs.04-0978.
  • Downs JC, Suh JK, Thomas KA, Bellezza AJ, Burgoyne CF, Hart RT. Viscoelastic characterization of peripapillary sclera: material properties by quadrant in rabbit and monkey eyes. J Biomech Eng. 2003;125:124–31. doi:10.1115/1.1536930.
  • Downs JC, Suh JK, Thomas KA, Bellezza AJ, Hart RT, Burgoyne CF. Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci. 2005;46:540–46. doi:10.1167/iovs.04-0114.
  • Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2005;46:4189–99. doi:10.1167/iovs.05-0541.
  • Feola AJ, Myers JG, Raykin J, Mulugeta L, Nelson ES, Samuels BC, Ethier CR. Finite element modeling of factors influencing optic nerve head deformation due to intracranial pressure. Invest Ophthalmol Vis Sci. 2016;57:1901–11. doi:10.1167/iovs.15-17573.
  • Wang X, Rumpel H, Lim WE, Baskaran M, Perera SA, Nongpiur ME, Aung T, Milea D, Girard MJ. Finite element analysis predicts large optic nerve strains heads during horizontal eye movements. Invest Ophthalmol Vis Sci. 2016;57:2452–62. doi:10.1167/iovs.15-18986.
  • Raykin J, Forte TE, Wang R, Feola A, Samuels BC, Myers JG, Mulugeta L, Nelson ES, Gleason RL, Ethier CR. Characterization of the mechanical behavior of the optic nerve sheath and its role in spaceflight-induced ophthalmic changes. Biomech Model Mechanobiol. 2017;16:33–43. doi:10.1007/s10237-016-0800-7.
  • Le A, Baig A, Shin A, Poukens V, Demer JL. 2017. Bilaminar structure of the human optic nerve sheath. Curr Eye Res. (in revision.)
  • Carew EO, Patel J, Garg A, Houghtaling P, Blackstone E, Vesely I. Effect of specimen size and aspect ratio on the tensile properties of porcine aortic valve tissues. Ann Biomed Eng. 2003;31:526–35. doi:10.1114/1.1568116.
  • Shin A, Yoo L, Demer JL. Independent active contraction of extraocular muscle compartments. Inv Ophtalmol Vis Sci. 2015;56:199–206. doi:10.1167/iovs.14-15968.
  • Mihai LA, Chin L, Janmey PA, Goriely A. A comparison of hyperelastic constitutive models applicable to brain and fat tissues. J R Soc Interface. 2015;12:0486. doi:10.1098/rsif.2015.0486.
  • Ogden RW Large deformation isotropic elasticity - Correlation of theory and experiment for incompressible rubberlike solids. Proc. Royal Soc. London Series A – Mathematical and Physical Sciences. 1972; 326:565.
  • Yoo L, Reed J, Shin A, Kung J, Gimzewski JK, Poukens V, Goldberg RA, Mancini R, Taban M, Moy R, et al. Characterization of ocular tissues using microindentation and hertzian viscoelastic models. Invest Ophthalmol Vis Sci. 2011;52:3475–82. doi:10.1167/iovs.10-6867.
  • Askeland DR, Fulay PP, Wright WJ. The Science and Engineering of Materials. 6 ed. Boston, MA: Cengage Learning; 2010.
  • Thomsen L. Weak Elastic-Anisotropy. Geophysics. 1986;51:1954–66. doi:10.1190/1.1442051.
  • Patel A, Fine B, Sandig M, Mequanint K. Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc Res. 2006;71:40–49. doi:10.1016/j.cardiores.2006.02.021.
  • Debelle L, Alix AJ. The structures of elastins and their function. Biochimie. 1999;81:981–94. doi:10.1016/S0300-9084(99)00221-7.
  • Daamen WF, Veerkamp JH, van Hest JC, van Kuppevelt TH. Elastin as a biomaterial for tissue engineering. Biomaterials. 2007;28:4378–98. doi:10.1016/j.biomaterials.2007.06.025.
  • Quigley HA, Dorman-Pease ME, Brown AE. Quantitative study of collagen and elastin of the optic nerve head and sclera in human and experimental monkey glaucoma. Curr Eye Res. 1991;10:877–88. doi:10.3109/02713689109013884.
  • Quigley HA, Brown A, Dorman-Pease ME. Alterations in elastin of the optic nerve head in human and experimental glaucoma. Br J Ophthalmol. 1991;75:552–57. doi:10.1136/bjo.75.9.552.
  • Oyama T, Abe H, Ushiki T. The connective tissue and glial framework in the optic nerve head of the normal human eye: light and scanning electron microscopic studies. Arch Histol Cytol. 2006;69:341–56. doi:10.1679/aohc.69.341.
  • Kono R, Poukens V, Demer JL. Quantitative analysis of the structure of the human extraocular muscle pulley system. Invest Ophthalmol Vis Sci. 2002;43:2923–32.
  • Oxlund H, Manschot J, Viidik A. The role of elastin in the mechanical properties of skin. J Biomech. 1988;21:213–18. doi:10.1016/0021-9290(88)90172-8.
  • Hernandez MR. Ultrastructural immunocytochemical analysis of elastin in the human lamina cribrosa. Changes in elastic fibers in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1992;33:2891–903.
  • Oxlund H, Andreassen TT. The roles of hyaluronic acid, collagen and elastin in the mechanical properties of connective tissues. J Anat. 1980;131:611–20.
  • Tektas OY, Lutjen-Drecoll E, Scholz M. Qualitative and quantitative morphologic changes in the vasculature and extracellular matrix of the prelaminar optic nerve head in eyes with POAG. Invest Ophthalmol Vis Sci. 2010;51:5083–91. doi:10.1167/iovs.09-5101.
  • Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24:39–73. doi:10.1016/j.preteyeres.2004.06.001.
  • Sigal IA, Ethier CR. Biomechanics of the optic nerve head. Exp Eye Res. 2009;88:799–807. doi:10.1016/j.exer.2009.02.003.
  • Wang X, Fisher LK, Milea D, Jonas JB, Girard MJ. Predictions of optic nerve traction forces and peripapillary tissue stresses following horizontal eye movements. Invest Ophthalmol Vis Sci. 2017;58:2044–53. doi:10.1167/iovs.16-21319.
  • Chang MY, Shin A, Park J, Nagiel A, Lalane RA, Schwartz SD, Demer JL. Deformation of optic nerve head and peripapillary tissues by horizontal duction. Am J Ophthalmol. 2017;174:85–94. doi:10.1016/j.ajo.2016.10.001.
  • Sibony PA. Gaze-evoked deformations of the peripapillary retina and papilledema and ischemic optic neuropathy. Inv Ophtalmol Vis Sci. 2016;57:4979–87. doi:10.1167/iovs.16-19931.
  • Park J, Giaconi JA, Nouri-Mahdavi K, Law SL, Bonelli L, Coleman AL, Caprioli J, Demer JL. Finite element analysis (FEA) of anatomical factors exaggerating optic nerve (ON) strain during adduction tethering in primary open angle glaucoma (POAG) without elevated intraocular pressure (IOP). ARVO Abstracts. 2019. 6172.
  • Geraghty B, Jones SW, Rama P, Akhtar R, Elsheikh A. Age-related variations in the biomechanical properties of human sclera. J Mech Behav Biomed Mater. 2012;16:181–91. doi:10.1016/j.jmbbm.2012.10.011.
  • Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD. Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci. 2012;53:1714–28. doi:10.1167/iovs.11-8009.
  • Avetisov ES, Savitskaya NF, Vinetskaya MI, Iomdina EN. A study of biochemical and biomechanical qualities of normal and myopic eye sclera in humans of different age groups. Metab Pediatr Syst Ophthalmol. 1983;7:183–88.
  • Booij JC, Baas DC, Beisekeeva J, Gorgels TG, Bergen AA. The dynamic nature of Bruch’s membrane. Prog Retin Eye Res. 2010;29:1–18. doi:10.1016/j.preteyeres.2009.08.003.
  • Albon J, Karwatowski WS, Easty DL, Sims TJ, Duance VC. Age related changes in the non-collagenous components of the extracellular matrix of the human lamina cribrosa. Br J Ophthalmol. 2000;84:311–17. doi:10.1136/bjo.84.3.311.
  • Albon J, Karwatowski WS, Avery N, Easty DL, Duance VC. Changes in the collagenous matrix of the aging human lamina cribrosa. Br J Ophthalmol. 1995;79:368–75. doi:10.1136/bjo.79.4.368.
  • Albon J, Purslow PP, Karwatowski WS, Easty DL. Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol. 2000;84:318–23. doi:10.1136/bjo.84.3.318.
  • Leung LK, Ko MW, Lam DC. Effect of age-stiffening tissues and intraocular pressure on optic nerve damages. Mol Cell Biomech. 2012;9:157–73.
  • Pena JD, Netland PA, Vidal I, Dorr DA, Rasky A, Hernandez MR. Elastosis of the lamina cribrosa in glaucomatous optic neuropathy. Exp Eye Res. 1998;67:517–24. doi:10.1006/exer.1998.0539.
  • Netland PA, Ye H, Streeten BW, Hernandez MR. Elastosis of the lamina cribrosa in pseudoexfoliation syndrome with glaucoma. Ophthalmology. 1995;102:878–86. doi:10.1016/S0161-6420(95)30939-6.
  • Le A, Chen J, Lesgart M, Gawargious BA, Suh SY, Demer JL. Age-dependent deformation of the optic nerve head and peripapillary retina by horizontal duction. Am J Ophthalmol. 2019. doi:10.1016/j.ajo.2019.08.017.
  • Lee EH, Radok JRM. The contact problem for viscoelastic bodies. J Appl Mech. 1960;27:438–44. doi:10.1115/1.3644020.
  • Mattice J, Lau A, Oyem M, Kent R. Spherical indentation load-relaxation of soft biological tissues. J Mater Res. 2006;21:2003–10. doi:10.1557/jmr.2006.0243.
  • Johnson KL. Contact Mechanics. Cambridge (UK): Cambridge University Press; 1985.
  • Oyen ML. Sopherical indentation creep following ramp loading. J Mater Res. 2005;20:2094–100. doi:10.1557/JMR.2005.0259.
  • Roylance D. Engineering Viscoelasticity. Cambridge: Department of Materials Science and Engineering - Massachusetts Institute of Technology; 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.