246
Views
11
CrossRef citations to date
0
Altmetric
Retina/Choroid

Normative Database of Peripapillary Vessel Density Measured by Optical Coherence Tomography Angiography and Correlation Study

ORCID Icon, , , , , , , & show all
Pages 1430-1437 | Received 11 Nov 2019, Accepted 10 Mar 2020, Published online: 27 Mar 2020

References

  • Hulsman CA, Vingerling JR, Hofman A, Witteman JC, de Jong PT. Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam study. Arch Ophthalmol. 2007;125(6):805–12. doi:10.1001/archopht.125.6.805.
  • Memarzadeh F, Ying-Lai M, Chung J, Azen SP, Varma R. Blood pressure, perfusion pressure, and open-angle glaucoma: the Los Angeles Latino eye study. Invest Ophthalmol Vis Sci. 2010;51(6):2872–77. doi:10.1167/iovs.08-2956.
  • Caprioli J, Coleman AL. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol. 2010;149(5):704–12. doi:10.1016/j.ajo.2010.01.018.
  • Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121(7):1322–32. doi:10.1016/j.ophtha.2014.01.021.
  • Werner AC, Shen LQ. A review of OCT angiography in glaucoma. Semin Ophthalmol. 2019;34(4):279–86. doi:10.1080/08820538.2019.1620807.
  • Scripsema NK, Garcia PM, Bavier RD, Chui TY, Krawitz BD, Mo S, Agemy SA, Xu L, Lin YB, Panarelli JF, et al. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal-tension glaucoma. Invest Ophthalmic Vis Sci. 2016;57(9):OCT611–OCT620. doi:10.1167/iovs.15-18945.
  • Shin JW, Sung KR, Lee JY, Kwon J, Seong M. Optical coherence tomography angiography vessel density mapping at various retinal layers in healthy and normal tension glaucoma eyes. Graefes Arch Clin Exp Ophthalmol. 2017;255(6):1193–202. doi:10.1007/s00417-017-3671-4.
  • Rao HL, Pradhan ZS, Weinreb RN, Reddy HB, Riyazuddin M, Sachdeva S, Puttaiah NK, Jayadev C, Webers CAB. Determinants of peripapillary and macular vessel densities measured by optical coherence tomography angiography in normal eyes. J Glaucoma. 2017;26(5):491–97. doi:10.1097/IJG.0000000000000655.
  • Rabiolo A, Gelormini F, Sacconi R, Cicinelli MV, Triolo G, Bettin P, Nouri-Mahdavi K, Bandello F, Querques G. Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography. PLoS One. 2018;13(10):e0205773. doi:10.1371/journal.pone.0205773.
  • Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, Belghith A, Manalastas PI, Medeiros FA, Weinreb RN. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology. 2016;123(12):2498–508. doi:10.1016/j.ophtha.2016.08.041.
  • Bazvand F, Mirshahi R, Fadakar K, Faghihi H, Sabour S, Ghassemi F. The quantitative measurements of vascular density and flow area of optic nerve head using optical coherence tomography angiography. J Glaucoma. 2017;26(8):735–41. doi:10.1097/IJG.0000000000000722.
  • Mansoori T, Sivaswamy J, Gamalapati JS, Agraharam SG, Balakrishna N. Measurement of radial peripapillary capillary density in the normal human retina using optical coherence tomography angiography. J Glaucoma. 2017;26(3):241–46. doi:10.1097/IJG.0000000000000594.
  • Wang Q, Chan S, Yang JY, You B, Wang YX, Jonas JB, Wei WB. Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography. Am J Ophthalmol. 2016;168:95–109. doi:10.1016/j.ajo.2016.05.005.
  • Triolo G, Rabiolo A, Shemonski ND, Fard A, Di Matteo F, Sacconi R, Bettin P, Magazzeni S, Querques G, Vazquez LE, et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci. 2017;58(13):5713–22. doi:10.1167/iovs.17-22865.
  • Akil H, Huang AS, Francis BA, Sadda SR, Chopra V. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS One. 2017;12(2):e0170476. doi:10.1371/journal.pone.0170476.
  • Zhang S, Wu C, Liu C, Jia Y, Zhang Y, Zhang Y, Zhang H, Zhong Y, Huang D. Optical coherence tomography angiography of the peripapillary retina in primary angle closure glaucoma. Am J Ophthalmol. 2017;182:194–200. doi:10.1016/j.ajo.2017.07.024.
  • Rao HL, Kadambi SV, Weinreb RN, Puttaiah NK, Pradhan ZS, Rao DAS, Kumar RS, Webers CAB, Shetty R. Diagnostic ability of peripapillary & vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol. 2017;101(8):1066–70. doi:10.1136/bjophthalmol-2016-309377.
  • Suwan Y, Geyman LS, Fard MA, Tantraworasin A, Chui TY, Rosen RB, Ritch R. Peripapillary perfused capillary density in exfoliation syndrome and exfoliation glaucoma versus POAG and healthy controls: an OCTA study. Asia Pac J Ophthalmol. 2017;7(2):84–89.
  • Mansoori T, Sivaswamy J, Gamalapati JS, Balakrishna N. Topography and correlation of radial peripapillary capillary density network with retinal nerve fibre layer thickness. Int Ophthamol. 2018;38(3):967–74. doi:10.1007/s10792-017-0544-0.
  • Cennamo G, Montorio D, Velotti N, Sparnelli F, Reibaldi M, Cennamo G. Optical coherence tomography angiography in pre-perimetric open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2017;255(9):1787–93. doi:10.1007/s00417-017-3709-7.
  • Akagi T, Iida Y, Nakanishi H, Terada N, Morooka S, Yamada H, Hasegawa T, Yokota S, Yoshikawa M, Yoshimura N. Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study. Am J Ophthalmol. 2016;168:237–49. doi:10.1016/j.ajo.2016.06.009.
  • Lommatzsch C, Rothaus K, Koch JM, Heinz C, Grisanti S. Vessel density in OCT angiography permits differentiation between normal and glaucomatous optic nerve heads. Int J Ophthalmol. 2018;11(5):835–43. doi:10.18240/ijo.2018.05.20.
  • Pinhas A, Linderman R, Mo S, Krawitz BD, Geyman LS, Carroll J, Rosen RB, Chui TY. A method for age-matched OCT angiography deviation mapping in the assessment of disease-related changes to the radial peripapillary capillaries. PLoS One. 2018;13(5):e0197062. doi:10.1371/journal.pone.0197062.
  • Falavarjani KG, Shenazandi H, Naseri D, Anvari P, Sedaghat A, Hashemi M, Sadun AA. Correlation of optic disc morphometry and optic disc microvasculature assessed with optical coherence tomography angiography. Can J Ophthalmol. 2018;53(6):595–99. doi:10.1016/j.jcjo.2018.01.026.
  • Wang Q, Chan SY, Yang JY, You B, Wang YX, Jonas JB, Wei WB. Density of the macular and radial peripapillary capillary network measured by optical coherence tomography angiography. Acta Ophthalmol. 2017;95(6):e511–e512. doi:10.1111/aos.2017.95.issue-6.
  • Yip VCH, Wong HT, Yong VKY, Lim BA, Hee OK, Cheng J, Fu H, Lim C, Tay ELT, Loo-Valdez RG, et al. Optical coherence tomography angiography of optic disc and macula vessel density in glaucoma and healthy eyes. J Glaucoma. 2019;28(7):80–87. doi:10.1097/IJG.0000000000001125.
  • Hou H, Moghimi S, Zangwill LM, Shoji T, Ghahari E, Manalastas PIC, Penteado RC, Weinreb RN. Inter-eye asymmetry of optical coherence tomography angiography vessel density in bilateral glaucoma, glaucoma suspect, and healthy eyes. Am J Ophthalmol. 2018;190:69–77. doi:10.1016/j.ajo.2018.03.026.
  • Brücher VC, Storp JJ, Eter N, Alnawaiseh M. Optical coherence tomography angiography-derived flow density: a review of the influencing factors. Graefes Arch Clin Exp Ophthalmol. 2019 Dec 9. doi:10.1007/s00417-019-04553-2. [ Epub ahead of print].
  • Zheng F, Zhang Q, Shi Y, Russell JF, Motulsky EH, Banta JT, Chu Z, Zhou H, Patel NA, de Sisternes L, et al. Age-dependent changes in the macular choriocapillaris of normal eyes imaged with swept-source optical coherence tomography angiography. Am J Ophthalmol. 2019;200:110–22. doi:10.1016/j.ajo.2018.12.025.
  • Orlov NV, Coletta C, van Asten F, Qian Y, Ding J, AlGhatrif M, Lakatta E, Chew E, Wong W, Swaroop A, et al. Age-related changes of the retinal microvasculature. PLoS One. 2019;14(5):e0215916. doi:10.1371/journal.pone.0215916.
  • Wen C, Pei C, Xu X, Lei J. Influence of axial length on parafoveal and peripapillary metrics from swept source optical coherence tomography angiography. Curr Eye Res. 2019;44(9):980–86. doi:10.1080/02713683.2019.1607393.
  • Mastropasqua R, Viggiano P, Borrelli E, Evangelista F, Libertini D, Di Antonio L, Toto L. In vivo mapping of the choriocapillaris in high myopia: a widefield swept source optical coherence tomography angiography. Sci Rep. 2019;9(1):18932. doi:10.1038/s41598-019-55192-w.
  • Liu L, Edmunds B, Takusagawa H, Tehrani S, Lombardi L, Morrison JC, Jia Y, Huang D. Projection-resolved optical coherence tomography angiography of the peripapillary retina in glaucoma. Am J Ophthalmol. 2019;207:99–109. doi:10.1016/j.ajo.2019.05.024.
  • Suh MH, Zangwill LM, Manalastas PIC, Belghith A, Yarmohammadi A, Medeiros FA, Diniz-Filho A, Saunders LJ, Weinreb RN. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology. 2016;123(12):2509–18. doi:10.1016/j.ophtha.2016.09.002.
  • Takusagawa HL, Liu L, Ma KN, Jia Y, Gao SS, Zhang M, Edmunds B, Parikh M, Tehrani S, Morrison JC, et al. Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology. 2017;124(11):1589–99. doi:10.1016/j.ophtha.2017.06.002.
  • Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55. doi:10.1016/j.preteyeres.2017.11.003.
  • Fenner BJ, Tan GSW, Tan ACS, Yeo IYS, Wong TY, Cheung GCM. Identification of imaging features that determine quality and repeatability of retinal capillary plexus density measurements in OCT angiography. Br J Ophthalmol. 2018;102(4):509–14. doi:10.1136/bjophthalmol-2017-310700.
  • Pascual-Prieto J, Burgos-Blasco B, Avila-Sanchez-Torija M, Arriola-Villalobos P, Fernández-Vigo JI, Barbero-Pedraz MA, García-Feijóo J, Martínez-de-la-Casa JM. Utility of optical coherence tomography angiography in detecting vascular retinal damage caused by arterial hypertension. Eur J Ophthalmol. 2019:1120672119831159. doi:10.1177/1120672119831159.
  • Tuncer Z, Altuğ M. Does foveal position relative to the optic disc affect optical coherence tomography measurements in glaucoma? Turk J Ophthalmol. 2018;48(4):178–84. doi:10.4274/tjo.
  • Fernández-Vigo JI, Kudsieh B, Macarro-Merino A, Arriola-Villalobos P, Martínez-de-la-Casa JM, García-Feijóo J, Fernández-Vigo JA. Reproducibility of macular and optic nerve head vessel density measurements by swept-source optical coherence tomography angiography. European J Ophthal. 2019:1120672119834472. doi:10.1177/1120672119834472.
  • She X, Guo J, Liu X, Zhu H, Li T, Zhou M, Wang F, Sun X. Reliability of vessel density measurements in the peripapillary retina and correlation with retinal nerve fiber layer thickness in healthy subjects using optical coherence tomography angiography. Ophthalmologica. 2018;240(4):183–90. doi:10.1159/000485957.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.