249
Views
8
CrossRef citations to date
0
Altmetric
Cornea

Evaluation of the Difference between Predicted and Measured Central Corneal Thickness Reduction after SMILE and Femtosecond Laser-assisted LASIK for Myopia

, &
Pages 1089-1095 | Received 02 Mar 2020, Accepted 27 Dec 2020, Published online: 26 Jan 2021

References

  • Spiru B, Kling S, Hafezi F, Sekundo W. Biomechanical properties of human cornea tested by two-dimensional extensiometry ex vivo in fellow eyes: femtosecond laser-assisted lasik versus smile. J Refract Surg. 2018;34(6):419–23. doi:10.3928/1081597X-20180402-05.
  • Santhiago MR, Smadja D, Gomes BF, Mello GR, Monteiro ML, Wilson SE, Randleman JB. Association between the percent tissue altered and post-laser in situ keratomileusis ectasia in eyes with normal preoperative topography. Am J Ophthalmol. 2014;158(1):87–95 e81. doi:10.1016/j.ajo.2014.04.002.
  • Luft N, Priglinger SG, Ring MH, Mayer WJ, Mursch-Edlmayr AS, Kreutzer TC, Bolz M, Dirisamer M. Stromal remodeling and lenticule thickness accuracy in small-incision lenticule extraction: one-year results. J Cataract Refract Surg. 2017;43(6):812–18. doi:10.1016/j.jcrs.2017.03.038.
  • Ivarsen A, Fledelius W, Hjortdal JO. Three-year changes in epithelial and stromal thickness after prk or lasik for high myopia. Invest Ophthalmol Vis Sci. 2009;50(5):2061–66. doi:10.1167/iovs.08-2853.
  • Reinstein DZ, Archer TJ, Gobbe M. Corneal ablation depth readout of the mel 80 excimer laser compared to artemis three-dimensional very high-frequency digital ultrasound stromal measurements. J Refract Surg. 2010;26(12):949–59. doi:10.3928/1081597X-20100114-02.
  • Kim BK, Mun SJ, Yang YH, Kim JS, Moon JH, Chung YT. Comparison of anterior segment changes after femtosecond laser lasik and smile using a dual rotating scheimpflug analyzer. BMC Ophthalmol. 2019;19(1):251. doi:10.1186/s12886-019-1257-0.
  • Febbraro JL, Picard H, Moran S, Grise-Dulac A, Salomon L, Gatinel D. Comparison of laser platform estimation and objective measurement of maximum ablation depth using scheimpflug pachymetry in myopic femtosecond laser in situ keratomileusis. Cornea. 2020;39(3):316–20. doi:10.1097/ICO.0000000000002143.
  • Labiris G, Sideroudi H, Giarmoukakis A, Koukoula S, Pagonis G, Kozobolis VP. Evaluation of the difference between intended and measured ablation and its impact on refractive outcomes of the wavefront optimize profile and the s001 wellington nomogram in myopic spherocylindrical corrections. Clin Exp Ophthalmol. 2012;40(2):127–33. doi:10.1111/j.1442-9071.2011.02633.x.
  • Villavicencio O, Belin MW, Ambrosio R Jr., Steinmueller A. Corneal pachymetry: new ways to look at an old measurement. J Cataract Refract Surg. 2014;40(5):695–701. doi:10.1016/j.jcrs.2014.04.001.
  • Arbelaez MC, Vidal C, Arba Mosquera S. Central ablation depth and postoperative refraction in excimer laser myopic correction measured with ultrasound, scheimpflug, and optical coherence pachymetry. J Refract Surg. 2009;25(8):699–708. doi:10.3928/1081597X-20090707-04.
  • Wu F, Yin H, Yang Y. Contralateral eye comparison between 2 cap thicknesses in small incision lenticule extraction: 110 versus 130 mum. Cornea. 2019;38(5):617–23. doi:10.1097/ICO.0000000000001835.
  • Katz J, Zeger S, Liang KY. Appropriate statistical methods to account for similarities in binary outcomes between fellow eyes. Invest Ophthalmol Vis Sci. 1994;35:2461–65.
  • Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10. doi:10.1016/S0140-6736(86)90837-8.
  • Smadja D, Santhiago MR, Mello GR, Roberts CJ, Dupps WJ Jr., Krueger RR. Response of the posterior corneal surface to myopic laser in situ keratomileusis with different ablation depths. J Cataract Refract Surg. 2012;38(7):1222–31. doi:10.1016/j.jcrs.2012.02.044.
  • Baek T, Lee K, Kagaya F, Tomidokoro A, Amano S, Oshika T. Factors affecting the forward shift of posterior corneal surface after laser in situ keratomileusis. Ophthalmology. 2001;108(2):317–20. doi:10.1016/S0161-6420(00)00502-9.
  • Maloca PM, Studer HP, Ambrosio R Jr., Goldblum D, Rothenbuehler S, Barthelmes D, Zweifel S, Scholl HPN, Balaskas K, Tufail A, et al. Interdevice variability of central corneal thickness measurement. PLoS One. 2018;13(9):e0203884. doi:10.1371/journal.pone.0203884.
  • Meyer JJ, Gokul A, Vellara HR, Prime Z, McGhee CN. Repeatability and agreement of orbscan ii, pentacam hr, and galilei tomography systems in corneas with keratoconus. Am J Ophthalmol. 2017:175122–128. doi:10.1016/j.ajo.2016.12.003.
  • Wu W, Wang Y, Xu L. Meta-analysis of pentacam vs. Ultrasound Pachymetry in Central Corneal Thickness Measurement in Normal, Post-lasik or Prk, and Keratoconic or Keratoconus-suspect Eyes. Graefes Arch Clin Exp Ophthalmol. 2014;252:91–99.
  • Aramberri J, Araiz L, Garcia A, Illarramendi I, Olmos J, Oyanarte I, Romay A, Vigara I. Dual versus single scheimpflug camera for anterior segment analysis: precision and agreement. J Cataract Refract Surg. 2012;38(11):1934–49. doi:10.1016/j.jcrs.2012.06.049.
  • Erie JC, Hodge DO, Bourne WM. Confocal microscopy evaluation of stromal ablation depth after myopic laser in situ keratomileusis and photorefractive keratectomy. J Cataract Refract Surg. 2004;30(2):321–25. doi:10.1016/j.jcrs.2003.09.058.
  • Savini G, Cummings AB, Balducci N, Barboni P, Huang J, Lombardo M, Serrao S, Ducoli P. Agreement between predicted and measured ablation depth after femtosecond laser-assisted lasik for myopia. J Refract Surg. 2016;32(3):164–70. doi:10.3928/1081597X-20160121-03.
  • Febbraro JL, Picard H, Moran S, Grise-Dulac A, Salomon L, Gatinel D. Comparison of laser platform estimation and objective measurement of maximum ablation depth using scheimpflug pachymetry in myopic femtosecond laser in situ keratomileusis. Cornea. 2020;39(3):316–320.
  • Kanellopoulos AJ, Georgiadou S, Asimellis G. Objective evaluation of planned versus achieved stromal thickness reduction in myopic femtosecond laser-assisted lasik. J Refract Surg. 2015;31(9):628–32. doi:10.3928/1081597X-20150820-09.
  • Wang D, Li Y, Sun M, Guo N, Zhang F. Lenticule thickness accuracy and influence in predictability and stability for different refractive errors after smile in chinese myopic eyes. Curr Eye Res. 2019;44(1):96–101. doi:10.1080/02713683.2018.1532011.
  • Randleman JB, Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg. 2008;24(1):S85–89. doi:10.3928/1081597X-20080101-15.
  • Sinha Roy A, Dupps WJ Jr., Roberts CJ. Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: finite-element analysis. J Cataract Refract Surg. 2014;40(6):971–80. doi:10.1016/j.jcrs.2013.08.065.
  • Damgaard IB, Ivarsen A, Hjortdal J. Refractive correction and biomechanical strength following smile with a 110- or 160-mum cap thickness, evaluated ex vivo by inflation test. Invest Ophthalmol Vis Sci. 2018;59(5):1836–43. doi:10.1167/iovs.17-23675.
  • Lee H, Kang DSY, Reinstein DZ, Roberts CJ, Ambrosio R Jr., Archer TJ, Jean SK, Kim EK, Seo KY, Jun I, et al. Adjustment of spherical equivalent correction according to cap thickness for myopic small incision lenticule extraction. J Refract Surg. 2019;35(3):153–60. doi:10.3928/1081597X-20190205-01.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.