565
Views
3
CrossRef citations to date
0
Altmetric
Review

Ocular Surface Disease in Glaucoma Patients

, , , , &
Pages 219-230 | Received 20 Dec 2021, Accepted 07 Feb 2022, Published online: 22 Mar 2022

References

  • Nijm LM, De Benito-Llopis L, Rossi GC, Vajaranant TS, Coroneo MT. Understanding the dual dilemma of dry eye and glaucoma: an international review. Asia Pac J Ophthalmol. 2020;9(6):481–490. doi:10.1097/APO.0000000000000327.
  • Asiedu K, Abu SL. The impact of topical intraocular pressure lowering medications on the ocular surface of glaucoma patients: a review. J Curr Ophthalmol. 2019;31(1):8–15. doi:10.1016/j.joco.2018.07.003.
  • Ferreras A, Figus M, Fogagnolo P, Iester M, Frezzotti P. Managing side effects on ocular surface caused by glaucoma eye drops. Curr Med Chem. 2019;26(22):4223–4224. doi:10.2174/092986732622190920092210.
  • Goldstein MH, Silva FQ, Blender N, Tran T, Vantipalli S. Ocular benzalkonium chloride exposure: problems and solutions. Eye. 2022;36(2):361–368. doi:10.1038/s41433-021-01668-x.
  • Kaštelan S, Tomić M, Metež Soldo K, Salopek-Rabatić J. How ocular surface disease impacts the glaucoma treatment outcome. Biomed Res Int. 2013;2013:696328–696327. 2013: doi:10.1155/2013/696328.
  • Mylla Boso AL, Gasperi E, Fernandes L, Costa VP, Alves M. Impact of ocular surface disease treatment in patients with glaucoma. Clin Ophthalmol. 2020;14:103–111. doi:10.2147/OPTH.S229815.
  • Voicu L, Salim S. New strategies for the management of ocular surface disease in glaucoma patients. Curr Opin Ophthalmol. 2021;32(2):134–140. doi:10.1097/ICU.0000000000000739.
  • Rossi GCM, Pasinetti GM, Scudeller L, Bianchi PE. Ocular surface disease and glaucoma: how to evaluate impact on quality of life. J Ocul Pharmacol Ther. 2013;29(4):390–394. doi:10.1089/jop.2011.0159.
  • Guarnieri A, Carnero E, Bleau AM, Alfonso-Bartolozzi B, Moreno-Montañés J. Relationship between OSDI questionnaire and ocular surface changes in glaucomatous patients. Int Ophthalmol. 2020;40(3):741–751. doi:10.1007/s10792-019-01236-z.
  • Stalmans I, Lemij H, Clarke J, Baudouin C. Signs and symptoms of ocular surface disease: the reasons for patient dissatisfaction with glaucoma treatments. Clin Ophthalmol. 2020;14:3675–3680. doi:10.2147/OPTH.S269586.
  • Lajmi H, Chelly Z, Choura R, Mansour KB, Hmaied W. Relationship between OSDI score and biomicroscopic ocular surface damages in glaucomatous patients treated with preserved antiglaucomatous eye drops. J Fr Ophtalmol. 2021;44(9):1326–1331. doi:10.1016/j.jfo.2021.03.008.
  • Carnevale C, Riva I, Roberti G, Michelessi M, Tanga L, Verticchio Vercellin AC, Agnifili L, Manni G, Harris A, Quaranta L, et al. Confocal microscopy and anterior segment optical coherence tomography imaging of the ocular surface and bleb morphology in medically and surgically treated glaucoma patients: a review. Pharmaceuticals. 2021;14(6):581. doi:10.3390/ph14060581.
  • Mastropasqua L, Agnifili L, Mastropasqua R, Fasanella V. Conjunctival modifications induced by medical and surgical therapies in patients with glaucoma. Curr Opin Pharmacol. 2013;13(1):56–64. doi:10.1016/j.coph.2012.10.002.
  • Zaleska-Żmijewska A, Strzemecka E, Wawrzyniak ZM, Szaflik JP. Extracellular MMP-9-based assessment of ocular surface inflammation in patients with primary open-angle glaucoma. J Ophthalmol. 2019;2019:1–7. 2019: doi:10.1155/2019/1240537.
  • Dubrulle P, Labbé A, Brasnu E, Liang H, Hamard P, Meziani L, Baudouin C. Influence of treating ocular surface disease on intraocular pressure in glaucoma patients intolerant to their topical treatments: a report of 10 cases. J Glaucoma. 2018;27(12):1105–1111. doi:10.1097/IJG.0000000000001041.
  • El Ameen A, Vandermeer G, Khanna RK, Pisella PJ. Objective ocular surface tolerance in patients with glaucoma treated with topical preserved or unpreserved prostaglandin analogues. Eur J Ophthalmol. 2019;29(6):645–653. doi:10.1177/1120672118805877.
  • Economou MA, Laukeland H, Grabska-Liberek I, Rouland JF. Better tolerance of preservative-free latanoprost compared to preserved glaucoma eye drops: the 12-month real-life FREE study. Clin Ophthalmol. 2018;12:2399–2407. doi:10.2147/OPTH.S176605.
  • Ahmed IK, Baudouin C, Gupta PK, Radcliffe NM. Ocular surface disease: an unexpected driver of adverse outcomes in glaucoma. EyeNet. 2021;2021:1–11.
  • Lajmi H, Hmaied W, Achour B, Zahaf A. Risk factors for ocular surface disease in Tunisian users of preserved antiglaucomatous eye drops. J Curr Ophthalmol. 2021;33(2):128–135. doi:10.4103/JOCO.JOCO_226_20.
  • Sahlu M, Giorgis AT. Dry eye disease among Glaucoma patients on topical hypotensive medications, in a tertiary hospital, Ethiopia. BMC Ophthalmol. 2021;21(1):155. doi:10.1186/s12886-021-01917-3.
  • Elhusseiny AM, Khalil AA, El Sheikh RH, Bakr MA, Eissa MG, El Sayed YM. New approaches for diagnosis of dry eye disease. Int J Ophthalmol. 2019;12(10):1618–1628. doi:10.18240/ijo.2019.10.15.
  • Elhusseiny AM, Eleiwa TK, Yacoub MS, George J, ElSheikh RH, Haseeb A, Kwan J, Elsaadani IA, Abo Shanab SM, Solyman O, et al. Relationship between screen time and dry eye symptoms in pediatric population during the COVID-19 pandemic. Ocul Surf. 2021;22:117–119. doi:10.1016/j.jtos.2021.08.002.
  • Vasile P. Ocular surface – a complex and vulnerable adoptive environment for topical glaucoma treatment. Rom J Ophthalmol. 2016;60(3):153–157.
  • Güçlü H, Çınar AK, Çınar AC, Akaray İ, Şambel Aykutlu M, Sakallıoğlu AK, Gürlü V. Corneal epithelium and limbal region alterations due to glaucoma medications evaluated by anterior segment optic coherence tomography: a case-control study. Cutan Ocul Toxicol. 2021;40(2):85–94. doi:10.1080/15569527.2021.1902341.
  • Muthusamy K, Tuft SJ. Iatrogenic limbal stem cell deficiency following drainage surgery for glaucoma. Can J Ophthalmol. 2018;53(6):574–579. doi:10.1016/j.jcjo.2018.01.037.
  • Figus M, Agnifili L, Lanzini M, Brescia L, Sartini F, Mastropasqua L, Posarelli C. Topical preservative-free ophthalmic treatments: an unmet clinical need. Expert Opin Drug Deliv. 2021;18(6):655–672. doi:10.1080/17425247.2021.1860014.
  • Shen W, Huang B, Yang J. Ocular surface changes in prostaglandin analogue-treated patients. J Ophthalmol. 2019;2019:9798272–9798277. 2019: doi:10.1155/2019/9798272.
  • Boimer C, Birt CM. Preservative exposure and surgical outcomes in glaucoma patients: the PESO study. J Glaucoma. 2013;22(9):730–735. doi:10.1097/IJG.0b013e31825af67d.
  • Herman DC, Gordon MO, Beiser JA, Chylack LT, Lamping KA, Schein OD, Soltau JB, Kass MA. Topical ocular hypotensive medication and lens opacification: evidence from the ocular hypertension treatment study. Am J Ophthalmol. 2006;142(5):800–810.e1. doi:10.1016/j.ajo.2006.06.052.
  • Muzychuk A, Racine L, Robert MC, Birt C, Penner V, Harasymowycz P, Crichton A, Ford B, Gooi P, Harissi-Dagher M. Management of ocular surface disease in glaucoma: a survey of canadian glaucoma specialists. J Glaucoma. 2020;29(12):1162–1172. doi:10.1097/IJG.0000000000001659.
  • Sencanic I, Gazibara T, Dotlic J, Stamenkovic M, Jaksic V, Bozic M, Grgurevic A. Validation of the glaucoma quality of life-15 questionnaire in Serbian language. Int J Ophthalmol. 2018;11(10):1674–1684. doi:10.18240/ijo.2018.10.16.
  • Jamerson EC, Elhusseiny AM, ElSheikh RH, Eleiwa TK, El Sayed YM. Role of matrix metalloproteinase 9 in ocular surface disorders. Eye Contact Lens. 2020;46(Suppl 2):S57–S63. doi:10.1097/ICL.0000000000000668.
  • Katsanos A, Riva I, Bozkurt B, Holló G, Quaranta L, Oddone F, Irkec M, Dutton GN, Konstas AG. A new look at the safety and tolerability of prostaglandin analogue eyedrops in glaucoma and ocular hypertension. Expert Opin Drug Saf. 2021;2021:1–15. doi:10.1080/14740338.2022.1996560.
  • Tang W, Zhang F, Liu K, Duan X. Efficacy and safety of prostaglandin analogues in primary open-angle glaucoma or ocular hypertension patients: a meta-analysis. Medicine. 2019;98(30):e16597. doi:10.1097/MD.0000000000016597.
  • Su C-C, Lee Y-C, Lee PRC. Assessment of ocular surface disease in glaucoma patients with benzalkonium chloride-preserved latanoprost eye drops: a short-term longitudinal study. Graefes Arch Clin Exp Ophthalmol. 2021;259(5):1243–1251. doi:10.1007/s00417-020-05067-y.
  • Seong HJ, Lee K, Lee SJ, Kim S, Park JW. Efficacy and safety of preservative-free latanoprost eyedrops compared with preserved prostaglandin analogues in patients with open-angle glaucoma. Korean J Ophthalmol. 2021;35(3):235–241. doi:10.3341/kjo.2021.0010.
  • Lee SM, Jin SW. Efficacy of preservative-free latanoprost in normal-tension glaucoma with mild to moderate dry eye. J Korean Ophthalmol Soc. 2020;61(6):639–644. doi:10.3341/jkos.2020.61.6.639.
  • Kim DW, Shin J, Lee CK, Kim M, Lee S, Rho S. Comparison of ocular surface assessment and adherence between preserved and preservative-free latanoprost in glaucoma: a parallel-grouped randomized trial. Sci Rep. 2021;11(1):14971. doi:10.1038/s41598-021-94574-x.
  • Harasymowycz P, Hutnik C, Rouland JF, Negrete FJM, Economou MA, Denis P, Baudouin C. Preserved versus preservative-free latanoprost for the treatment of glaucoma and ocular hypertension: a post hoc pooled analysis. Adv Ther. 2021;38(6):3019–3031. doi:10.1007/s12325-021-01731-9.
  • Muz OE, Dagdelen K, Pirdal T, Guler M. Comparison of BAK-preserved latanoprost and polyquad-preserved travoprost on ocular surface parameters in patients with glaucoma and ocular hypertension. Int Ophthalmol. 2021;41(11):3825–3835. doi:10.1007/s10792-021-01947-2.
  • Kumar S, Singh T, Ichhpujani P, Vohra S, Thakur S. Correlation of ocular surface disease and quality of life in Indian Glaucoma Patients: BAC-preserved versus BAC-free Travoprost. Turk J Ophthalmol. 2020;50(2):75–81. doi:10.4274/tjo.galenos.2019.29000.
  • Lopes NLV, Gracitelli CPB, Chalita MR. Ocular surface evaluation after the substitution of benzalkonium chloride preserved prostaglandin eye drops by a preservative-free prostaglandin analogue. Med Hypothesis Discov Innov Ophthalmol. 2019;8(1):52–56.
  • Hagras S, Al-Duwailah OH, Nassief M, Abdelhameed A. Crossover randomized study comparing the efficacy and tolerability of preservative-free Tafluprost 0.0015% to Latanoprost 0.005% in patients with primary open-angle glaucoma. Indian J Ophthalmol. 2021;69(9):2475. doi:10.4103/ijo.IJO_165_21.
  • Konstas AGP, Bányai L, Blask K-D, Väth J, Kozobolis VP, Trüb PR, Tsironi S, Maloutas S, Teus MA, Stewart WC. Intraocular pressure and safety in glaucoma patients switching to latanoprost/timolol maleate fixed combination from mono- and adjunctive therapies. J Ocul Pharmacol Ther. 200;20(5):375–382. doi:10.1089/jop.2004.20.375.
  • Ruangvaravate N, Choojun K, Srikulsasitorn B, Chokboonpiem J, Asanatong D, Trakanwitthayarak S. Ocular surface changes after switching from other prostaglandins to tafluprost and preservative-free tafluprost in glaucoma patients. Clin Ophthalmol. 2020;14:3109–3119. doi:10.2147/OPTH.S264984.
  • Kim JM, Park SW, Seong M, Ha SJ, Lee JW, Rho S, Lee CE, Kim KN, Kim T-W, Sung KR, et al. Comparison of the safety and efficacy between preserved and preservative-free latanoprost and preservative-free tafluprost. Pharmaceuticals. 2021;14(6):501. doi:10.3390/ph14060501.
  • Lee SY, Lee K, Park CK, Kim S, Bae HW, Seong GJ, Kim CY. Meibomian gland dropout rate as a method to assess meibomian gland morphologic changes during use of preservative-containing or preservative-free topical prostaglandin analogues. PLoS One. 2019;14(6):e0218886. doi:10.1371/journal.pone.0218886.
  • Lazreg S, Merad Z, Nouri MT, Garout R, Derdour A, Ghroud N, Kherroubi R, Meziane M, Belkacem S, Ouhadj O, et al. Efficacy and safety of preservative-free timolol 0.1% gel in open-angle glaucoma and ocular hypertension in treatment-naïve patients and patients intolerant to other hypotensive medications. J Fr Ophtalmol. 2018;41(10):945–954. doi:10.1016/j.jfo.2018.04.012.
  • Kuppens EV, de Jong CA, Stolwijk TR, de Keizer RJ, van Best JA. Effect of timolol with and without preservative on the basal tear turnover in glaucoma. Br J Ophthalmol. 1995;79(4):339–342. doi:10.1136/bjo.79.4.339.
  • Ishibashi T, Yokoi N, Kinoshita S. Comparison of the short-term effects on the human corneal surface of topical timolol maleate with and without benzalkonium chloride. J Glaucoma. 2003;12(6):486–490. doi:10.1097/00061198-200312000-00008.
  • Masschelein W, Rice RG. 1979. Chlorine dioxide: chemistry and environmental impact of oxychlorine compounds [Internet]. Edt. for publication in English. Ann Arbor (MI): Ann Arbor Science, 1979; ISBN 0-250-40224-6. doi:10.1002/aheh.19830110210.
  • Katz LJ. Twelve-month evaluation of brimonidine-purite versus brimonidine in patients with glaucoma or ocular hypertension. J Glaucoma. 2002;11(2):119–126. doi:10.1097/00061198-200204000-00007.
  • Konstas AG, Schmetterer L, Katsanos A, Hutnik CML, Holló G, Quaranta L, Teus MA, Uusitalo H, Pfeiffer N, Katz LJ. Dorzolamide/timolol fixed combination: learning from the past and looking toward the future. Adv Ther. 2021;38(1):24–51. doi:10.1007/s12325-020-01525-5.
  • Choudhri S, Wand M, Shields MB. A comparison of dorzolamide-timolol combination versus the concomitant drugs. Am J Ophthalmol. 2000;130(6):832–833. doi:10.1016/S0002-9394(00)00717-0.
  • Bacharach J, Delgado MF, Iwach AG. Comparison of the efficacy of the fixed-combination timolol/dorzolamide versus concomitant administration of timolol and dorzolamide. J Ocul Pharmacol Ther. 2003;19(2):93–96. doi:10.1089/108076803321637618.
  • Hutnik C. Tolerability and effectiveness of preservative-free dorzolamide-timolol (preservative-free COSOPT) in patients with open-angle glaucoma or ocular hypertension. Clin Ophthalmol. 2010;4:581–590. doi:10.2147/OPTH.S10337.
  • Bourne RRA, Kaarniranta K, Lorenz K, Traverso CE, Vuorinen J, Ropo A. Changes in ocular signs and symptoms in patients switching from bimatoprost–timolol to tafluprost–timolol eye drops: an open-label phase IV study. BMJ Open. 2019;9(4):e024129. doi:10.1136/bmjopen-2018-024129.
  • Karlova EV, Petrov SY, Germanova VN. Preservative-free fixed combination in the treatment of open-angle glaucoma and ocular hypertension: the VISIONARY Study (EUPAS22204). Vestn Oftal’mol. 2020;136(4):76–84. doi:10.17116/oftalma202013604176.
  • Meza-Rios A, Navarro-Partida J, Armendariz-Borunda J, Santos A. Therapies based on nanoparticles for eye drug delivery. Ophthalmol Ther. 2020;9(3):1–14. doi:10.1007/s40123-020-00257-7.
  • Yadav KS, Rajpurohit R, Sharma S. Glaucoma: current treatment and impact of advanced drug delivery systems. Life Sci. 2019;221:362–376. doi:10.1016/j.lfs.2019.02.029.
  • Gulsen D, Chauhan A. Dispersion of microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle. Int J Pharm. 2005;292(1–2):95–117. doi:10.1016/j.ijpharm.2004.11.033.
  • Aref AA. Sustained drug delivery for glaucoma: current data and future trends. Curr Opin Ophthalmol. 2017;28(2):169–174. doi:10.1097/ICU.0000000000000334.
  • Miller PE, Eaton JS. Medical anti-glaucoma therapy: beyond the drop. Vet Ophthalmol. 2021;24(Suppl 1):2–15. doi:10.1111/vop.12843.
  • Gupta S, Vyas SP. Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci Pharm. 2010;78(4):959–976. doi:10.3797/scipharm.1001-06.
  • Pang X, Li J, Pi J, Qi D, Guo P, Li N, Wu Y, Liu Z. Increasing efficacy and reducing systemic absorption of brimonidine tartrate ophthalmic gels in rabbits. Pharm Dev Technol. 2018;23(3):231–239. doi:10.1080/10837450.2017.1328693.
  • Gupta H, Jain S, Mathur R, Mishra P, Mishra AK, Velpandian T. Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system. Drug Deliv. 2007;14(8):507–515. doi:10.1080/10717540701606426.
  • Gupta H, Velpandian T, Jain S. Ion- and pH-activated novel in-situ gel system for sustained ocular drug delivery. J Drug Target. 2010;18(7):499–505. doi:10.3109/10611860903508788.
  • Talaei S, Mahboobian MM, Mohammadi M. Investigating the ocular toxicity potential and therapeutic efficiency of in situ gel nanoemulsion formulations of brinzolamide. Toxicol Res. 2020;9(4):578–587. doi:10.1093/toxres/tfaa066.
  • Hathout RM, Gad HA, Abdel-Hafez SM, Nasser N, Khalil N, Ateyya T, Amr A, Yasser N, Nasr S, Metwally AA. Gelatinized core liposomes: a new Trojan horse for the development of a novel timolol maleate glaucoma medication. Int J Pharm. 2019;556:192–199. doi:10.1016/j.ijpharm.2018.12.015.
  • Schnichels S, Hurst J, de Vries JW, Ullah S, Frößl K, Gruszka A, Löscher M, Bartz-Schmidt KU, Spitzer MS, Herrmann A, 2021. Improved treatment options for glaucoma with brimonidine-loaded lipid DNA nanoparticles. ACS Appl Mater Interfaces. 2019;13(8):9445–9456. doi:10.1021/acs.0c18626.
  • Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine. 2012;7:123–131. doi:10.2147/IJN.S25468.
  • Kouchak M, Malekahmadi M, Bavarsad N, Saki Malehi A, Andishmand L. Dorzolamide nanoliposome as a long action ophthalmic delivery system in open angle glaucoma and ocular hypertension patients. Drug Dev Ind Pharm. 2018;44(8):1239–1242. doi:10.1080/03639045.2017.1386196.
  • Allam A, Elsabahy M, El Badry M, Eleraky NE. Betaxolol-loaded niosomes integrated within pH-sensitive in situ forming gel for management of glaucoma. Int J Pharm. 2021;598:120380. doi:10.1016/j.ijpharm.2021.120380.
  • Bessone CDV, Akhlaghi SP, Tártara LI, Quinteros DA, Loh W, Allemandi DA. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma. Eur J Pharm Sci. 2021;160:105748. doi:10.1016/j.ejps.2021.105748.
  • Tian C, Zeng L, Tang L, Yu J, Ren M. Sustained delivery of timolol using nanostructured lipid carriers-laden soft contact lenses. AAPS PharmSciTech. 2021;22(6):212. doi:10.1208/s12249-021-02096-6.
  • Ciolino JB, Ross AE, Tulsan R, Watts AC, Wang R-F, Zurakowski D, Serle JB, Kohane DS. Latanoprost-eluting contact lenses in glaucomatous monkeys. Ophthalmology. 2016;123(10):2085–2092. doi:10.1016/j.ophtha.2016.06.038.
  • Brandt JD, Sall K, DuBiner H, Benza R, Alster Y, Walker G, Semba CP, Budenz D, Day D, Flowers B, et al. Six-month intraocular pressure reduction with a topical bimatoprost ocular insert: results of a phase II randomized controlled study. Ophthalmology. 2016;123(8):1685–1694. doi:10.1016/j.ophtha.2016.04.026.
  • Rubião F, Araújo ACF, Sancio JB, Nogueira BS, Franca JR, Nogueira JC, Ferreira AJ, Faraco AAG, Foureaux G, Cronemberger S. Topical bimatoprost insert for primary open-angle glaucoma and ocular hypertension treatment – a phase ii controlled study. Curr Drug Deliv. 2021;18(7):1022–1026. [accessed 2021 Nov 21]doi:10.2174/1567201818666210101112256.
  • Perera SA, Ting DS, Nongpiur ME, Chew PT, Aquino MCD, Sng CC, Ho S-W, Aung T. Feasibility study of sustained-release travoprost punctum plug for intraocular pressure reduction in an Asian population. Clin Ophthalmol. 2016;10:757–764. doi:10.2147/OPTH.S102181.
  • Medeiros FA, Walters TR, Kolko M, Coote M, Bejanian M, Goodkin ML, Guo Q, Zhang J, Robinson MR, Weinreb RN. Phase 3, randomized, 20-month study of bimatoprost implant in open-angle glaucoma and ocular hypertension (ARTEMIS 1). Ophthalmology. 2020;127(12):1627–1641. doi:10.1016/j.ophtha.2020.06.018.
  • Craven ER, Walters T, Christie WC, Day DG, Lewis RA, Goodkin ML, Chen M, Wangsadipura V, Robinson MR, Bejanian M. 24-month phase I/II clinical trial of bimatoprost sustained-release implant (Bimatoprost SR) in glaucoma patients. Drugs. 2020;80(2):167–179. doi:10.1007/s40265-019-01248-0.
  • Saini M, Dhiman R, Dada T, Tandon R, Vanathi M. Topical cyclosporine to control ocular surface disease in patients with chronic glaucoma after long-term usage of topical ocular hypotensive medications. Eye. 2015;29(6):808–814. doi:10.1038/eye.2015.40.
  • Shtein RM, Shen JF, Kuo AN, Hammersmith KM, Li JY, Weikert MP. Autologous serum-based eye drops for treatment of ocular surface disease: a report by the American academy of ophthalmology. Ophthalmology. 2020;127(1):128–133. doi:10.1016/j.ophtha.2019.08.018.
  • Yoon CH, Lee HJ, Park HY, Kim H, Kim MK, Jeoung JW, Oh JY. Effects of topical autologous serum on the ocular surface in patients with toxic corneal epitheliopathy induced by anti-glaucoma drugs. Int Ophthalmol. 2020;40(3):547–552. doi:10.1007/s10792-019-01211-8.
  • So H-R, Park HYL, Chung S-H, Kim H-S, Byun Y-S. Effect of autologous serum eyedrops on ocular surface disease caused by preserved glaucoma eyedrops. J Clin Med. 2020;9(12):3904. doi:10.3390/jcm9123904.
  • Anitua E, de la Sen-Corcuera B, Orive G, Sánchez-Ávila R, Heredia P, Muruzabal F, Merayo-Lloves J. Progress in the use of plasma rich in growth factors in ophthalmology: from ocular surface to ocular fundus. Expert Opin Biol Ther. 2021;2021:1–15. doi:10.1080/14712598.2021.1945030.
  • Sanchez-Avila RM, Merayo-Lloves J, Fernandez ML, Rodríguez Gutiérrez LA, Rodríguez-Calvo PP, Fernandez-Vega Cueto A, Muruzabal F, Orive G, Anitua E. Plasma rich in growth factors eye drops to treat secondary ocular surface disorders in patients with glaucoma. Int Med Case Rep J. 2018;11:97–103. doi:10.2147/IMCRJ.S153918.
  • Rodríguez-Agirretxe I, Freire V, Muruzabal F, Orive G, Anitua E, Díez-Feijóo E, Acera A. Subconjunctival PRGF fibrin membrane as an adjuvant to nonpenetrating deep sclerectomy: a 2-year pilot study. Ophthalmic Res. 2018;59(1):45–52. doi:10.1159/000481535.
  • Soriano D, Ferrandez B, Mateo A, Polo V, Garcia-Martin E. Meibomian gland changes in open-angle glaucoma users treated with topical medication. Optom Vis Sci. 2021;98(10):1177–1182. doi:10.1097/OPX.0000000000001782.
  • Uzunosmanoglu E, Mocan MC, Kocabeyoglu S, Karakaya J, Irkec M. Meibomian gland dysfunction in patients receiving long-term glaucoma medications. Cornea. 2016;35(8):1112–1116. doi:10.1097/ICO.0000000000000838.
  • Hu J, Zhu S, Liu X. Efficacy and safety of a vectored thermal pulsation system (Lipiflow®) in the treatment of meibomian gland dysfunction: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol. 2022;260(1):25–39. doi:10.1007/s00417-021-05363-1.
  • Kasetsuwan N, Suwajanakorn D, Tantipat C, Reinprayoon U. The efficacy between conventional lid hygiene and additional thermal pulsatile system in meibomian gland dysfunction patients treated with long-term anti-glaucoma medications in a randomized controlled trial. Clin Ophthalmol. 2020;14:2891–2902. doi:10.2147/OPTH.S259692.
  • Lane SS, DuBiner HB, Epstein RJ, Ernest PH, Greiner JV, Hardten DR, Holland EJ, Lemp MA, McDonald JE, Silbert DI, et al. A new system, the LipiFlow, for the treatment of meibomian gland dysfunction. Cornea. 2012;31(4):396–404. doi:10.1097/ICO.0b013e318239aaea.
  • Blackie CA, Coleman CA, Holland EJ. The sustained effect (12 months) of a single-dose vectored thermal pulsation procedure for meibomian gland dysfunction and evaporative dry eye. Clin Ophthalmol. 2016;10:1385–1396. doi:10.2147/OPTH.S109663.
  • Greiner JV. Long-term (12-month) improvement in meibomian gland function and reduced dry eye symptoms with a single thermal pulsation treatment. Clin Experiment Ophthalmol. 2013;41(6):524–530. doi:10.1111/ceo.12033.
  • Gazzard G, Konstantakopoulou E, Garway-Heath D, Barton K, Wormald R, Morris S, Hunter R, Rubin G, Buszewicz M, Ambler G. et al. Laser in Glaucoma and Ocular Hypertension (LiGHT) trial. A multicentre, randomised controlled trial: design and methodology. Br J Ophthalmol. 2018;102(5):593–598. doi:10.1136/bjophthalmol-2017-310877.
  • Gazzard G, Konstantakopoulou E, Garway-Heath D, Garg A, Vickerstaff V, Hunter R, Ambler G, Bunce C, Wormald R, Nathwani N. et al. Selective laser trabeculoplasty versus eye drops for first-line treatment of ocular hypertension and glaucoma (LiGHT): a multicentre randomised controlled trial. Lancet. 2019;393(10180):1505–1516. doi:10.1016/S0140-6736(18)32213-X.
  • De Keyser M, De Belder M, De Groot V. Quality of life in glaucoma patients after selective laser trabeculoplasty. Int J Ophthalmol. 2017;10(5):742–748. doi:10.18240/ijo.2017.05.14.
  • Ang GS, Fenwick EK, Constantinou M, Gan ATL, Man REK, Casson RJ, Finkelstein EA, Goldberg I, Healey PR, Pesudovs K, et al. Selective laser trabeculoplasty versus topical medication as initial glaucoma treatment: the glaucoma initial treatment study randomised clinical trial. Br J Ophthalmol. 2020;104(6):813–821. doi:10.1136/bjophthalmol-2018-313396.
  • Patel S, Pasquale LR. Glaucoma drainage devices: a review of the past, present, and future. Semin Ophthalmol. 2010;25(5–6):265–270. doi:10.3109/08820538.2010.518840.
  • El Sayed YM, Elhusseiny AM, Albalkini AS, El Sheikh RH, Osman MA. C-augmented phacotrabeculectomy versus phacoemulsification in primary angle-closure glaucoma: a randomized controlled study. J Glaucoma. 2019;28(10):911–915. doi:10.1097/IJG.0000000000001345.
  • Agnifili L, Brescia L, Oddone F, Sacchi M, D’Ugo E, Di Marzio G, Perna F, Costagliola C, Mastropasqua R. The ocular surface after successful glaucoma filtration surgery: a clinical, in vivo confocal microscopy, and immune-cytology study. Sci Rep. 2019;9(1):11299. doi:10.1038/s41598-019-47823-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.