163
Views
0
CrossRef citations to date
0
Altmetric
Retina and Choroid

Cystic Fibrosis Transmembrane Conductance Regulator Attenuates Oxidative Stress-Induced Injury in Diabetic Retinopathy Rats

, , , , , , & show all
Pages 416-424 | Received 10 Feb 2022, Accepted 04 Dec 2022, Published online: 02 Feb 2023

References

  • Lechner J, O’Leary OE, Stitt AW. The pathology associated with diabetic retinopathy. Vision Res. 2017;139:7–14. doi:10.1016/j.visres.2017.04.003.
  • Moreno A, Lozano M, Salinas P. Diabetic retinopathy. Nutr Hosp. 2013:28 Suppl 2:53–56.
  • Bahr HI, Abdelghany AA, Galhom RA, Barakat BM, Arafa EA, Fawzy MS. Duloxetine protects against experimental diabetic retinopathy in mice through retinal gfap downregulation and modulation of neurotrophic factors. Exp Eye Res. 2019;186:107742. doi:10.1016/j.exer.2019.107742.
  • Heng LZ, Comyn O, Peto T, Tadros C, Ng E, Sivaprasad S, Hykin PG. Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabet Med. 2013;30(6):640–650. doi:10.1111/dme.12089.
  • Zeng J, Chen B. Epigenetic mechanisms in the pathogenesis of diabetic retinopathy. Ophthalmologica. 2014;232(1):1–9. doi:10.1159/000357824.
  • Tang H, Li G, Zhao Y, Wang F, Gower EW, Shi L, Wang T. Comparisons of diabetic retinopathy events associated with glucose-lowering drugs in patients with type 2 diabetes mellitus: a network meta-analysis. Diabetes Obes Metab. 2018;20(5):1262–1279.
  • Calderon GD, Juarez OH, Hernandez GE, Punzo SM, De la Cruz ZD. Oxidative stress and diabetic retinopathy: development and treatment. Eye (Lond). 2017;31(8):1122–1130.
  • Bernard K, Wang W, Narlawar R, Schmidt B, Kirk KL. Curcumin cross-links cystic fibrosis transmembrane conductance regulator (CFTR) polypeptides and potentiates CFTR channel activity by distinct mechanisms. J Biol Chem. 2009;284(45):30754–30765.
  • Moran O. The gating of the CFTR channel. Cell Mol Life Sci. 2017;74(1):85–92. doi:10.1007/s00018-016-2390-z.
  • Zhang YP, Zhang Y, Xiao ZB, Zhang YB, Zhang J, Li ZQ, Zhu YB. CFTR prevents neuronal apoptosis following cerebral ischemia reperfusion via regulating mitochondrial oxidative stress. J Mol Med (Berl). 2018;96(7):611–620.
  • Ntimbane T, Comte B, Mailhot G, Berthiaume Y, Poitout V, Prentki M, Rabasa-Lhoret R, Levy E. Cystic fibrosis-related diabetes: from CFTR dysfunction to oxidative stress. Clin Biochem Rev. 2009;30(4):153–177.
  • Gaines H, Jones KR, Lim J, Medhi NF, Chen S, Scofield RH. Effect of CFTR modulator therapy on cystic fibrosis-related diabetes. J Diabetes Complications. 2021;35(6):107845. doi:10.1016/j.jdiacomp.2020.107845.
  • Fei Y, Sun L, Yuan C, Jiang M, Lou Q, Xu Y. CFTR ameliorates high glucose-induced oxidative stress and inflammation by mediating the NF-kappaB and MAPK signaling pathways in endothelial cells. Int J Mol Med. 2018;41(6):3501–3508. doi:10.3892/ijmm.2018.3547.
  • Barthold S, Bayne K, Davis M, Bayne K, Davis, M. Guide for the care and use of laboratory animals; Washington (DC); 2011.
  • Zhang LQ, Cui H, Wang L, Fang X, Su S. Role of microRNA-29a in the development of diabetic retinopathy by targeting AGT gene in a rat model. Exp Mol Pathol. 2017;102(2):296–302. doi:10.1016/j.yexmp.2017.02.004.
  • Al-Dosari DI, Ahmed MM, Al-Rejaie SS, Alhomida AS, Ola MS. Flavonoid naringenin attenuates oxidative stress, apoptosis and improves neurotrophic effects in the diabetic rat retina. Nutrients. 2017;9(10):1161. doi:10.3390/nu9101161.
  • Zhang B, Zhou KK, Ma JX. Inhibition of connective tissue growth factor overexpression in diabetic retinopathy by SERPINA3K via blocking the WNT/beta-catenin pathway. Diabetes. 2010;59(7):1809–1816. doi:10.2337/db09-1056.
  • Huang WQ, Guo JH, Zhang XH, Yu MK, Chung YW, Ruan YC, Chan HC. Glucose-sensitive CFTR suppresses glucagon secretion by potentiating KATP channels in pancreatic islet alpha cells. Endocrinology. 2017;158(10):3188–3199. doi:10.1210/en.2017-00282.
  • Liu X, Li J, Li X. miR-142-5p regulates the progression of diabetic retinopathy by targeting IGF1. Int J Immunopathol Pharmacol. 2020;34:2058738420909041. doi:10.1177/2058738420909041.
  • Liu J, Bhuvanagiri S, Qu X. The protective effects of Lycopus lucidus turcz in diabetic retinopathy and its possible mechanisms. Artif Cells Nanomed Biotechnol. 2019;47(1):2900–2908. doi:10.1080/21691401.2019.1640230.
  • Forrester JV, Kuffova L, Delibegovic M. The role of inflammation in diabetic retinopathy. Front Immunol. 2020;11:583687.
  • Rubsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy. Int J Mol Sci. 2018;19(4):942.
  • Taurone S, Ralli M, Nebbioso M, Greco A, Artico M, Attanasio G, Gharbiya M, Plateroti AM, Zamai L, Micera A. The role of inflammation in diabetic retinopathy: a review. Eur Rev Med Pharmacol Sci. 2020;24(20):10319–10329.
  • Zeng M, Szymczak M, Ahuja M, Zheng C, Yin H, Swaim W, Chiorini JA, Bridges RJ, Muallem S. Restoration of CFTR activity in ducts rescues acinar cell function and reduces inflammation in pancreatic and salivary glands of mice. Gastroenterology. 2017;153(4):1148–1159. doi:10.1053/j.gastro.2017.06.011.
  • Su X, Looney MR, Su HE, Lee JW, Song Y, Matthay MA. Role of CFTR expressed by neutrophils in modulating acute lung inflammation and injury in mice. Inflamm Res. 2011;60(7):619–632. doi:10.1007/s00011-011-0313-x.
  • Kang Q, Yang C. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020;37:101799. doi:10.1016/j.redox.2020.101799.
  • Wei LF, Zhang HM, Wang SS, Jing JJ, Zheng ZC, Gao JX, Liu Z, Tian J. Changes of MDA and sod in brain tissue after secondary brain injury with seawater immersion in rats. Turk Neurosurg. 2016;26(3):384–288. doi:10.5137/1019-5149.JTN.8265-13.1.
  • Xu Z, Wei Y, Gong J, Cho H, Park JK, Sung ER, Huang H, Wu L, Eberhart C, Handa JT, et al. NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia. 2014;57(1):204–213. doi:10.1007/s00125-013-3093-8.
  • Biswas C, Shah N, Muthu M, La P, Fernando AP, Sengupta S, Yang G, Dennery PA. Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses. J Biol Chem. 2014;289(39):26882–26894.
  • Wang Y, Gao L, Li Z, Ma X. Microrna-301a-3p promotes diabetic retinopathy via regulation of six-transmembrane epithelial antigen of prostate 4. Inflamm Res. 2021;70(4):445–457.
  • Li X, Deng A, Liu J, Hou W. The role of Keap1-Nrf2-are signal pathway in diabetic retinopathy oxidative stress and related mechanisms. Int J Clin Exp Pathol. 2018;11(6):3084–3090.
  • Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2011;52(2):1156–1163. doi:10.1167/iovs.10-6293.
  • Han YS, Chung IY, Park JM, Yu JM. Neuroprotective effect of citicoline on retinal cell damage induced by kainic acid in rats. Korean J Ophthalmol. 2005;19(3):219–226. doi:10.3341/kjo.2005.19.3.219.
  • Ola MS, Ahmed MM, Ahmad R, Abuohashish HM, Al-Rejaie SS, Alhomida AS. Neuroprotective effects of rutin in streptozotocin-induced diabetic rat retina. J Mol Neurosci. 2015;56(2):440–448. doi:10.1007/s12031-015-0561-2.
  • L’Hoste S, Chargui A, Belfodil R, Duranton C, Rubera I, Mograbi B, Poujeol C, Tauc M, Poujeol P. CFTR mediates cadmium-induced apoptosis through modulation of ROS level in mouse proximal tubule cells. Free Radic Biol Med. 2009;46(8):1017–1031. doi:10.1016/j.freeradbiomed.2008.12.009.
  • Wang H, Zhou W, Zhang J, Li H. Role of JNK and ERK1/2 MAPK signaling pathway in testicular injury of rats induced by di-N-butyl-phthalate (DBP). Biol Res. 2019;52(1):41.
  • Lv C, Fu S, Dong Q, Yu Z, Zhang G, Kong C, Fu C, Zeng Y. Page4 promotes prostate cancer cells survive under oxidative stress through modulating MAPK/JNK/ERK pathway. J Exp Clin Cancer Res. 2019;38(1):24.
  • Long Y, Xiang Y, Liu S, Zhang Y, Wan J, Yang Q, Cui M, Ci Z, Li N, Peng W. Baicalin liposome alleviates lipopolysaccharide-induced acute lung injury in mice via inhibiting TLR4/JNK/ERK/NF-kappaB pathway. Mediators Inflamm. 2020;2020:8414062.
  • Lee SM, Kim EJ, Suk K, Lee WH. Stimulation of Fas (CD95) induces production of pro-inflammatory mediators through ERK/JNK-dependent activation of NF-kappaB in THP-1 cells. Cell Immunol. 2011;271(1):157–162.
  • Li N, Liu BW, Ren WZ, Liu JX, Li SN, Fu SP, Zeng YL, Xu SY, Yan X, Gao YJ, et al. GLP-2 attenuates LPS-induced inflammation in BV-2 cells by inhibiting ERK1/2, JNK1/2 and NF-kappaB signaling pathways. Int J Mol Sci. 2016;17(2):190. doi:10.3390/ijms17020190.
  • Miao GS, Liu ZH, Wei SX, Luo JG, Fu ZJ, Sun T. Lipoxin a4 attenuates radicular pain possibly by inhibiting spinal ERK, JNK and NF-kappaB/p65 and cytokine signals, but not p38, in a rat model of non-compressive lumbar disc herniation. Neuroscience. 2015;300:10–18. doi:10.1016/j.neuroscience.2015.04.060.
  • Dong ZW, Chen J, Ruan YC, Zhou T, Chen Y, Chen Y, Tsang LL, Chan HC, Peng YZ. CFTR-regulated MAPK/NF-kappaB signaling in pulmonary inflammation in thermal inhalation injury. Sci Rep. 2015;5:15946. doi:10.1038/srep15946.
  • Xu X, Huang H, Yin X, Fang H, Shen X. Effect of lentivirus-mediated CFTR overexpression on oxidative stress injury and inflammatory response in the lung tissue of COPD mouse model. Biosci Rep. 2020;40(1):BSR20193667.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.