123
Views
1
CrossRef citations to date
0
Altmetric
Retina and Choroid

Segmentation Errors and Off-Center Artifacts in SS-OCT: Insight from a Population-Based Imaging Study

, , , , , , , & ORCID Icon show all
Pages 949-955 | Received 02 Feb 2023, Accepted 06 Jun 2023, Published online: 27 Jun 2023

References

  • Asrani S, Essaid L, Alder BD, Santiago-Turla C. Artifacts in spectral-domain optical coherence tomography measurements in glaucoma. JAMA Ophthalmol. 2014;132(4):396–402. doi: 10.1001/jamaophthalmol.2013.7974.
  • Liu Y, Simavli H, Que CJ, Rizzo JL, Tsikata E, Maurer R, Chen TC. Patient characteristics associated with artifacts in Spectralis optical coherence tomography imaging of the retinal nerve fiber layer in glaucoma. Am J Ophthalmol. 2015;159(3):565–576.e2. doi: 10.1016/j.ajo.2014.12.006.
  • Bazvand F, Ghassemi F. Artifacts in macular optical coherence tomography. J Curr Ophthalmol. 2020;32(2):123–131. doi: 10.4103/JOCO.JOCO_83_20.
  • Giani A, Cigada M, Esmaili DD, Salvetti P, Luccarelli S, Marziani E, Luiselli C, Sabella P, Cereda M, Eandi C, et al. Artifacts in automatic retinal segmentation using different optical coherence tomography instruments. Retina. 2010;30(4):607–616. doi: 10.1097/IAE.0b013e3181c2e09d.
  • Sull AC, Vuong LN, Price LL, Srinivasan VJ, Gorczynska I, Fujimoto JG, Schuman JS, Duker JS. Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina. 2010;30(2):235–245. doi: 10.1097/IAE.0b013e3181bd2c3b.
  • Lains I, Wang JC, Cui Y, Katz R, Vingopoulos F, Staurenghi G, Vavvas DG, Miller JW, Miller JB. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). Prog Retin Eye Res. 2021;84:100951. doi: 10.1016/j.preteyeres.2021.100951.
  • Han X, Ellwein LB, Guo X, Hu Y, Yan W, He M. Progression of near vision loss and incidence of near vision impairment in an adult Chinese population. Ophthalmology. 2017;124(5):734–742. doi: 10.1016/j.ophtha.2017.01.020.
  • Han IC, Jaffe GJ. Evaluation of artifacts associated with macular spectral-domain optical coherence tomography. Ophthalmology. 2010;117(6):1177–1189.e4. doi: 10.1016/j.ophtha.2009.10.029.
  • Ray R, Stinnett SS, Jaffe GJ. Evaluation of image artifact produced by optical coherence tomography of retinal pathology. Am J Ophthalmol. 2005;139(1):18–29. doi: 10.1016/j.ajo.2004.07.050.
  • Lee SY, Kwon HJ, Bae HW, Seo SJ, Lee YH, Hong S, Seong GJ, Kim CY. Frequency, type and cause of artifacts in swept-source and Cirrus HD optical coherence tomography in cases of glaucoma and suspected glaucoma. Curr Eye Res. 2016;41(7):957–964. doi: 10.3109/02713683.2015.1075219.
  • Mansouri K, Medeiros FA, Tatham AJ, Marchase N, Weinreb RN. Evaluation of retinal and choroidal thickness by swept-source optical coherence tomography: repeatability and assessment of artifacts. Am J Ophthalmol. 2014;157(5):1022–1032. doi: 10.1016/j.ajo.2014.02.008.
  • Li A, Thompson AC, Asrani S. Impact of artifacts from optical coherence tomography retinal nerve fiber layer and macula scans on detection of glaucoma progression. Am J Ophthalmol. 2021;221:235–245. doi: 10.1016/j.ajo.2020.08.018.
  • Miki A, Kumoi M, Usui S, Endo T, Kawashima R, Morimoto T, Matsushita K, Fujikado T, Nishida K. Prevalence and associated factors of segmentation errors in the peripapillary retinal nerve fiber layer and macular ganglion cell complex in spectral-domain optical coherence tomography images. J Glaucoma. 2017;26(11):995–1000. doi: 10.1097/IJG.0000000000000771.
  • Choi S, Jassim F, Tsikata E, Khoueir Z, Poon LY, Braaf B, Vakoc BJ, Bouma BE, de Boer JF, Chen TC. Artifact rates for 2D retinal nerve fiber layer thickness versus 3D retinal nerve fiber layer volume. Transl Vis Sci Technol. 2020;9(3):12. doi: 10.1167/tvst.9.3.12.
  • Moreno-Montanes J, Anton A, Olmo N, Bonet E, Alvarez A, Barrio-Barrio J, Garcia-Granero M, Gomez MA. Misalignments in the retinal nerve fiber layer evaluation using cirrus high-definition optical coherence tomography. J Glaucoma. 2011;20(9):559–565. doi: 10.1097/IJG.0b013e3181fa0def.
  • Park EA, Tsikata E, Lee JJ, Shieh E, Braaf B, Vakoc BJ, Bouma BE, de Boer JF, Chen TC. Artifact rates for 2D retinal nerve fiber layer thickness versus 3D neuroretinal rim thickness using spectral-domain optical coherence tomography. Transl Vis Sci Technol. 2020;9(10):10. doi: 10.1167/tvst.9.10.10.
  • Simavli H, Poon LY, Que CJ, Liu Y, Akduman M, Tsikata E, de Boer JF, Chen TC. Diagnostic capability of peripapillary retinal volume measurements in glaucoma. J Glaucoma. 2017;26(6):592–601. doi: 10.1097/IJG.0000000000000621.
  • Pablo LE, Cameo B, Bambo MP, Polo V, Larrosa JM, Fuertes MI, Guerri N, Ferrandez B, Garcia-Martin E. Peripapillary choroidal thickness analysis using swept-source optical coherence tomography in glaucoma patients: a broader approach. Ophthalmic Res. 2018;59(1):7–13. doi: 10.1159/000479877.
  • Jiang R, Wang YX, Wei WB, Xu L, Jonas JB. Peripapillary choroidal thickness in adult Chinese: the Beijing Eye Study. Invest Ophthalmol Vis Sci. 2015;56(6):4045–4052. doi: 10.1167/iovs.15-16521.
  • Gupta P, Cheung CY, Baskaran M, Tian J, Marziliano P, Lamoureux EL, Cheung CM, Aung T, Wong TY, Cheng CY. Relationship between peripapillary choroid and retinal nerve fiber layer thickness in a population-based sample of nonglaucomatous eyes. Am J Ophthalmol. 2016;161:4–11.e1–2. doi: 10.1016/j.ajo.2015.09.018.
  • Asrani S, Edghill B, Gupta Y, Meerhoff G. Optical coherence tomography errors in glaucoma. J Glaucoma. 2010;19(4):237–242. doi: 10.1097/IJG.0b013e3181b21f99.
  • van der Schoot J, Vermeer KA, de Boer JF, Lemij HG. The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images. Invest Ophthalmol Vis Sci. 2012;53(4):2424–2430. doi: 10.1167/iovs.11-8436.
  • Wei Y, Jiang H, Shi Y, Qu D, Gregori G, Zheng F, Rundek T, Wang J. Age-related alterations in the retinal microvasculature, microcirculation, and microstructure. Invest Ophthalmol Vis Sci. 2017;58(9):3804–3817. doi: 10.1167/iovs.17-21460.
  • Demirkaya N, van Dijk HW, van Schuppen SM, Abramoff MD, Garvin MK, Sonka M, Schlingemann RO, Verbraak FD. Effect of age on individual retinal layer thickness in normal eyes as measured with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(7):4934–4940. doi: 10.1167/iovs.13-11913.
  • Ye C, Yu M, Leung CK. Impact of segmentation errors and retinal blood vessels on retinal nerve fibre layer measurements using spectral-domain optical coherence tomography. Acta Ophthalmol. 2016;94(3):e211–e219. doi: 10.1111/aos.12762.
  • Maurice C, Friedman Y, Cohen MJ, Kaliner E, Mimouni M, Kogan M, Blumenthal EZ. Histologic RNFL thickness in glaucomatous versus normal human eyes. J Glaucoma. 2016;25(5):447–451. doi: 10.1097/IJG.0000000000000286.
  • Ho J, Sull AC, Vuong LN, Chen Y, Liu J, Fujimoto JG, Schuman JS, Duker JS. Assessment of artifacts and reproducibility across spectral- and time-domain optical coherence tomography devices. Ophthalmology. 2009;116(10):1960–1970. doi: 10.1016/j.ophtha.2009.03.034.
  • Cheung CY, Chan N, Leung CK. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: impact of signal strength on analysis of the RNFL map. Asia Pac J Ophthalmol. 2012;1(1):19–23. doi: 10.1097/APO.0b013e31823e595d.
  • Wu Z, Huang J, Dustin L, Sadda SR. Signal strength is an important determinant of accuracy of nerve fiber layer thickness measurement by optical coherence tomography. J Glaucoma. 2009;18(3):213–216. doi: 10.1097/IJG.0b013e31817eee20.
  • Kok PH, van den Berg TJ, van Dijk HW, Stehouwer M, van der Meulen IJ, Mourits MP, Verbraak FD. The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography. Acta Ophthalmol. 2013;91(5):418–424. doi: 10.1111/j.1755-3768.2012.02514.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.