126
Views
1
CrossRef citations to date
0
Altmetric
Lens

Carbon Monoxide Releasing Molecule-3 Alleviates Oxidative Stress and Apoptosis in Selenite-Induced Cataract in Rats via Activating Nrf2/HO-1 Pathway

, , , , , , & show all
Pages 919-929 | Received 05 Feb 2023, Accepted 29 Jun 2023, Published online: 10 Jul 2023

References

  • Lee CM, Afshari NA. The global state of cataract blindness. Curr Opin Ophthalmol. 2017;28(1):98–103. doi:10.1097/ICU.0000000000000340.
  • Khairallah M, Kahloun R, Bourne R, Limburg H, Flaxman SR, Jonas JB, Keeffe J, Leasher J, Naidoo K, Pesudovs K, et al. Number of people blind or visually impaired by cataract worldwide and in World Regions, 1990 to 2010. Invest Ophthalmol Vis Sci. 2015;56(11):6762–6769. doi:10.1167/iovs.15-17201.
  • Batlle JF, Lansingh VC, Silva JC, Eckert KA, Resnikoff S. The cataract situation in Latin America: barriers to cataract surgery. Am J Ophthalmol. 2014;158(2):242–250.e1. e241. doi:10.1016/j.ajo.2014.04.019.
  • Reis T, Lansingh V, Ramke J, Silva JC, Resnikoff S, Furtado JM. Cataract as a cause of blindness and vision impairment in Latin America: progress made and challenges beyond 2020. Am J Ophthalmol. 2021;225:1–10. doi:10.1016/j.ajo.2020.12.022.
  • Peterson SR, Silva PA, Murtha TJ, Sun JK. Cataract surgery in patients with diabetes: management strategies. Semin Ophthalmol. 2018;33(1):75–82. doi:10.1080/08820538.2017.1353817.
  • Haripriya A, Baam ZR, Chang DF. Endophthalmitis prophylaxis for cataract surgery. Asia Pac J Ophthalmol (Phila)). 2017;6(4):324–329. doi:10.22608/APO.2017200.
  • Qin VL, Conti FF, Singh RP. Measuring outcomes in cataract surgery. Curr Opin Ophthalmol. 2018;29(1):100–104. doi:10.1097/ICU.0000000000000434.
  • Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–247. doi:10.1038/35041687.
  • Cekic S, Zlatanovic G, Cvetkovic T, Petrovic B. Oxidative stress in cataractogenesis. Bosn J Basic Med Sci. 2010;10(3):265–269.
  • Liu XF, Hao JL, Xie T, Malik TH, Lu CB, Liu C, Shu C, Lu CW, Zhou DD. Nrf2 as a target for prevention of age-related and diabetic cataracts by against oxidative stress. Aging Cell. 2017;16(5):934–942. doi:10.1111/acel.12645.
  • Xie CA, Singh J, Tyagi M, Androudi S, Dave VP, Arora A, Gupta V, Agrawal R, Mi H, Sen A. Apoptosis of lens epithelial cells and expression of nlrp3-related proteins in patients with diabetes and cataract. Ocul Immunol Inflamm. 2022;31(5):1103–1110. doi:10.1080/09273948.2022.2126863.
  • Imelda E, Idroes R, Khairan K, Lubis RR, Abas AH, Nursalim AJ, Rafi M, Tallei TE. Natural antioxidant activities of plants in preventing cataractogenesis. Antioxidants. 2022;11(7):1285. doi:10.3390/antiox11071285.
  • Hsueh YJ, Chen YN, Tsao YT, Cheng CM, Wu WC, Chen HC. The pathomechanism, antioxidant biomarkers, and treatment of oxidative stress-related eye diseases. Int J Mol Sci. 2022;23(3):1255.
  • Ma Y, Liu Y, Shu B, Yang J, Lv L, Zhou L, Wang L, Shi Z. CircMAP3K4 protects human lens epithelial cells from H2O2-induced dysfunction by targeting miR-193a-3p/PLCD3 axis in age-related cataract. Cell Cycle. 2023;22(3):303–315. doi:10.1080/15384101.2022.2114587.
  • Huang Y, Ma T, Ye Z, Li H, Zhao Y, Chen W, Fu Y, Ye Z, Sun A, Li Z. Carbon monoxide (CO) inhibits hydrogen peroxide (H2O2)-induced oxidative stress and the activation of NF-kappaB signaling in lens epithelial cells. Exp Eye Res. 2018;166:29–39. doi:10.1016/j.exer.2017.08.016.
  • Huang Y, Ye Z, Ma T, Li H, Zhao Y, Chen W, Wang Y, Yan X, Gao Y, Li Z. Carbon monoxide (CO) modulates hydrogen peroxide (H2O2)-mediated cellular dysfunction by targeting mitochondria in rabbit lens epithelial cells. Exp Eye Res. 2018;169:68–78. doi:10.1016/j.exer.2018.01.023.
  • Jin C, Lin B-H, Zheng G, Tan K, Liu G-Y, Yao Z, Xie J, Chen W-K, Chen L, Xu T-H, et al. CORM-3 attenuates oxidative stress-induced bone loss via the Nrf2/HO-1 pathway. Oxid Med Cell Longev. 2022;2022:5098358. doi:10.1155/2022/5098358.
  • Lin CC, Yang CC, Hsiao LD, Yang CM. Carbon monoxide releasing molecule-3 enhances heme oxygenase-1 induction via ROS-dependent FoxO1 and Nrf2 in brain astrocytes. Oxid Med Cell Longev. 2021;2021:5521196. doi:10.1155/2021/5521196.
  • Portal L, Morin D, Motterlini R, Ghaleh B, Pons S. The CO-releasing molecule CORM-3 protects adult cardiomyocytes against hypoxia-reoxygenation by modulating pH restoration. Eur J Pharmacol. 2019;862:172636. doi:10.1016/j.ejphar.2019.172636.
  • Dai Y, Chen H, Pan Y, Song H. Carbon monoxide-releasing molecule-3 suppresses the malignant biological behavior of tongue squamous cell carcinoma via regulating Keap1/Nrf2/HO-1 signaling pathway. Biomed Res Int. 2022;2022:9418332. doi:10.1155/2022/9418332.
  • Liu Y, Li J, Ye Z, Ma T, Li Z. Protective effects of piceatannol against selenite-induced cataract and oxidative damage in rats. Curr Eye Res. 2022;47(9):1272–1278. doi:10.1080/02713683.2022.2104320.
  • Tamada Y, Fukiage C, Nakamura Y, Azuma M, Kim YH, Shearer TR. Evidence for apoptosis in the selenite rat model of cataract. Biochem Biophys Res Commun. 2000;275(2):300–306. doi:10.1006/bbrc.2000.3298.
  • Zhang R, Wei Y, Zhang S, Li H, Li J, Ma B, Zhu X, Song X, Zhou H. Inhibitory effect of Idelalisib on selenite-induced cataract in Sprague Dawley rat pups. Curr Eye Res. 2022;47(3):365–371. doi:10.1080/02713683.2021.1988984.
  • Deshane J, Chen S, Caballero S, Grochot-Przeczek A, Was H, Li Calzi S, Lach R, Hock TD, Chen B, Hill-Kapturczak N, et al. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. J Exp Med. 2007;204(3):605–618. doi:10.1084/jem.20061609.
  • Ren Y, D'Ambrosio MA, Wang H, Liu R, Garvin JL, Carretero OA. Heme oxygenase metabolites inhibit tubuloglomerular feedback (TGF). Am J Physiol Renal Physiol. 2008;295(4):F1207–1212. doi:10.1152/ajprenal.90243.2008.
  • Zheng G, Zhan Y, Wang H, Luo Z, Zheng F, Zhou Y, Wu Y, Wang S, Wu Y, Xiang G, et al. Carbon monoxide releasing molecule-3 alleviates neuron death after spinal cord injury via inflammasome regulation. EBioMedicine. 2019;40:643–654. doi:10.1016/j.ebiom.2018.12.059.
  • Zhang LM, Zhang DX, Zheng WC, Hu JS, Fu L, Li Y, Xin Y, Wang XP. CORM-3 exerts a neuroprotective effect in a rodent model of traumatic brain injury via the bidirectional gut-brain interactions. Exp Neurol. 2021;341:113683. doi:10.1016/j.expneurol.2021.113683.
  • Hiraoka T, Clark JI. Inhibition of lens opacification during the early stages of cataract formation. Invest Ophthalmol Vis Sci. 1995;36(12):2550–2555.
  • Yang T, Lin X, Li H, Zhou X, Fan F, Yang J, Luo Y, Liu X. Acetyl-11-Keto-Beta Boswellic Acid (AKBA) protects lens epithelial cells against H2O2-induced oxidative injury and attenuates cataract progression by activating Keap1/Nrf2/HO-1 signaling. Front Pharmacol. 2022;13:927871. doi:10.3389/fphar.2022.927871.
  • Mulhern ML, Madson CJ, Danford A, Ikesugi K, Kador PF, Shinohara T. The unfolded protein response in lens epithelial cells from galactosemic rat lenses. Invest Ophthalmol Vis Sci. 2006;47(9):3951–3959. doi:10.1167/iovs.06-0193.
  • Liu Z, Huang S, Zheng Y, Zhou T, Hu L, Xiong L, Li DW, Liu Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res. 2023;92:101112. doi:10.1016/j.preteyeres.2022.101112.
  • Lin CC, Yang CC, Hsiao LD, Chen SY, Yang CM. Heme oxygenase-1 induction by carbon monoxide releasing molecule-3 suppresses interleukin-1beta-mediated neuroinflammation. Front Mol Neurosci. 2017;10:387. doi:10.3389/fnmol.2017.00387.
  • Kwong AM, Luke PPW, Bhattacharjee RN. Carbon monoxide mechanism of protection against renal ischemia and reperfusion injury. Biochem Pharmacol. 2022;202:115156. doi:10.1016/j.bcp.2022.115156.
  • Sun HJ, Wang ZC, Nie XW, Bian JS. Therapeutic potential of carbon monoxide in hypertension-induced vascular smooth muscle cell damage revisited: from physiology and pharmacology. Biochem Pharmacol. 2022;199:115008. doi:10.1016/j.bcp.2022.115008.
  • Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: a Systematic Review of Effects, Mechanisms, and Challenges. Adv Sci (Weinh)). 2022;9(13):e2104136. doi:10.1002/advs.202104136.
  • Damasceno ROS, Soares PMG, Barbosa A, Nicolau LAD, Medeiros JR, Souza M. Modulatory role of carbon monoxide on the inflammatory response and oxidative stress linked to gastrointestinal disorders. Antioxid Redox Signal. 2022;37(1-3):98–114. doi:10.1089/ars.2020.8223.
  • Dugbartey GJ, Alornyo KK, Luke PPW, Sener A. Application of carbon monoxide in kidney and heart transplantation: A novel pharmacological strategy for a broader use of suboptimal renal and cardiac grafts. Pharmacol Res. 2021;173:105883. doi:10.1016/j.phrs.2021.105883.
  • Bihari A, Chung KA, Cepinskas G, Sanders D, Schemitsch E, Lawendy AR. Carbon monoxide-releasing molecule-3 (CORM-3) offers protection in an in vitro model of compartment syndrome. Microcirculation. 2019;26(7):e12577. doi:10.1111/micc.12577.
  • Yabluchanskiy A, Sawle P, Homer-Vanniasinkam S, Green CJ, Foresti R, Motterlini R. CORM- 3, a carbon monoxide-releasing molecule, alters the inflammatory response and reduces brain damage in a rat model of hemorrhagic stroke. Crit Care Med. 2012;40(2):544–552. doi:10.1097/CCM.0b013e31822f0d64.
  • Fu L, Zhang DX, Zhang LM, Song YC, Liu FH, Li Y, Wang XP, Zheng WC, Wang XD, Gui CX, et al. Exogenous carbon monoxide protects against mitochondrial DNAinduced hippocampal pyroptosis in a model of hemorrhagic shock and resuscitation. Int J Mol Med. 2020;45(4):1176–1186. doi:10.3892/ijmm.2020.4493.
  • Bihari A, Cepinskas G, Forbes TL, Potter RF, Lawendy AR. Systemic application of carbon monoxide-releasing molecule 3 protects skeletal muscle from ischemia-reperfusion injury. J Vasc Surg. 2017;66(6):1864–1871. doi:10.1016/j.jvs.2016.11.065.
  • Bai J, Bai Y, Wang XP, Zheng WC, Zhang LM. Carbon monoxide-releasing molecule-3 ameliorates acute lung injury in a model of hemorrhagic shock and resuscitation: roles of p38MAPK signaling pathway. Shock. 2021;55(6):816–826. doi:10.1097/SHK.0000000000001684.
  • Wang J, Zhang D, Fu X, Yu L, Lu Z, Gao Y, Liu X, Man J, Li S, Li N, et al. Carbon monoxide-releasing molecule-3 protects against ischemic stroke by suppressing neuroinflammation and alleviating blood-brain barrier disruption. J Neuroinflammation. 2018;15(1):188. doi:10.1186/s12974-018-1226-1.
  • Zhang LM, Zhang DX, Fu L, Li Y, Wang XP, Qi MM, Li CC, Song PP, Wang XD, Kong XJ. Carbon monoxide-releasing molecule-3 protects against cortical pyroptosis induced by hemorrhagic shock and resuscitation via mitochondrial regulation. Free Radic Biol Med. 2019;141:299–309. doi:10.1016/j.freeradbiomed.2019.06.031.
  • Ran H, Liu H, Wu P. Echinatin mitigates H2O2-induced oxidative damage and apoptosis in lens epithelial cells via the Nrf2/HO-1 pathway. Adv Clin Exp Med. 2021;30(11):1195–1203. doi:10.17219/acem/139130.
  • Liu S, Jin Z, Xia R, Zheng Z, Zha Y, Wang Q, Wan X, Yang H, Cai J. Protection of human lens epithelial cells from oxidative stress damage and cell apoptosis by KGF-2 through the Akt/Nrf2/HO-1 pathway. Oxid Med Cell Longev. 2022;2022:6933812. doi:10.1155/2022/6933812.
  • Fang Y, Mo X, Luo Y, Lu Y. BAX gene over-expression via nucleofection to induce apoptosis in human lens epithelial cells. Exp Biol Med. 2012;237(9):1000–1006. doi:10.1258/ebm.2012.012108.
  • Wu J, Xi Y, Huang L, Li G, Mao Q, Fang C, Shan T, Jiang W, Zhao M, He W, et al. A steroid-type antioxidant targeting the Keap1/Nrf2/ARE signaling pathway from the soft coral dendronephthya gigantea. J Nat Prod. 2018;81(11):2567–2575. doi:10.1021/acs.jnatprod.8b00728.
  • Huang Y, Li J, Li W, Ai N, Jin H. Biliverdin/Bilirubin redox pair protects lens epithelial cells against oxidative stress in age-related cataract by regulating NF-kappaB/iNOS and Nrf2/HO-1 Pathways. Oxid Med Cell Longev. 2022;2022:7299182. doi:10.1155/2022/7299182.
  • Elanchezhian R, Palsamy P, Madson CJ, Mulhern ML, Lynch DW, Troia AM, Usukura J, Shinohara T. Low glucose under hypoxic conditions induces unfolded protein response and produces reactive oxygen species in lens epithelial cells. Cell Death Dis. 2012;3(4):e301. doi:10.1038/cddis.2012.40.
  • Tsai CF, Wu JY, Hsu YW. Protective effects of rosmarinic acid against selenite-induced cataract and oxidative damage in rats. Int J Med Sci. 2019;16(5):729–740. doi:10.7150/ijms.32222.
  • Chen H, Tian W, Huang K. Effect of blood-retinal barrier development on formation of selenite nuclear cataract in rat. Toxicol Lett. 2013;216(2-3):181–188. doi:10.1016/j.toxlet.2012.11.016.
  • Chen H, Zhou J. Effects of sodium selenite on oxidative damage in the liver, kidney and brain in a selenite cataract rat model. Biol Trace Elem Res. 2020;197(2):533–543. doi:10.1007/s12011-019-02000-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.