84
Views
3
CrossRef citations to date
0
Altmetric
Orbit and Adnexa

Machine Learning Model with Texture Analysis for Automatic Classification of Histopathological Images of Ocular Adnexal Mucosa-associated Lymphoid Tissue Lymphoma of Two Different Origins

ORCID Icon, , , , , , & show all
Pages 1195-1202 | Received 13 May 2023, Accepted 05 Aug 2023, Published online: 23 Aug 2023

References

  • Goto H, Yamakawa N, Komatsu H, Asakage M, Tsubota K, Ueda SI, Nemoto R, Umazume K, Usui Y, Mori H. Clinico-epidemiological analysis of 1000 cases of orbital tumors. Jpn J Ophthalmol. 2021;65(5):704–723. doi: 10.1007/s10384-021-00857-1.
  • Shimizu N, Oshitari T, Yotsukura J, Yokouchi H, Baba T, Yamamoto S. Ten-year epidemiological study of ocular and orbital tumors in Chiba University Hospital. BMC Ophthalmol. 2021;21(1):344. doi: 10.1186/s12886-021-02108-w.
  • Swerdlow SC, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. 2017.
  • Freeman C, Berg JW, Cutler SJ. Occurrence and prognosis of extranodal lymphomas. Cancer. 1972;29(1):252–260. doi: 10.1002/1097-0142(197201)29:1<252::AID-CNCR2820290138>3.0.CO;2-#.
  • Vest SD, Coupland SE, Esmaeli B, Finger PT, Graue GF, Grossniklaus HE, Hindso TG, Holm F, Honavar SG, Khong JJ, et al. Specific location of ocular adnexal lymphoma and mortality: an International Multicentre Retrospective Study. Br J Ophthalmol. 2022. doi: 10.1136/bjophthalmol-2021-320466.
  • Jara-Lazaro AR, Thamboo TP, Teh M, Tan PH. Digital pathology: exploring its applications in diagnostic surgical pathology practice. Pathology. 2010;42(6):512–518. doi: 10.3109/00313025.2010.508787.
  • Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118. doi: 10.1038/nature21056.
  • Nishio M, Nishio M, Jimbo N, Nakane K. Homology-based image processing for automatic classification of histopathological images of lung tissue. Cancers. 2021;13(6):1192. doi: 10.3390/cancers13061192.
  • Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–2410. doi: 10.1001/jama.2016.17216.
  • Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9(4):611–629. doi: 10.1007/s13244-018-0639-9.
  • Miyoshi H, Sato K, Kabeya Y, Yonezawa S, Nakano H, Takeuchi Y, Ozawa I, Higo S, Yanagida E, Yamada K, et al. Deep learning shows the capability of high-level computer-aided diagnosis in malignant lymphoma. Lab Invest. 2020;100(10):1300–1310. doi: 10.1038/s41374-020-0442-3.
  • Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–2390. doi: 10.1182/blood-2016-01-643569.
  • Van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RG, Fillion-Robin J-C, Pieper S, Aerts HJ. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–e107. doi: 10.1158/0008-5472.CAN-17-0339.
  • Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295(2):328–338. doi: 10.1148/radiol.2020191145.
  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–2830.
  • Chen T, Guestrin C. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
  • Swiderska-Chadaj Z, Hebeda KM, van den Brand M, Litjens G. Artificial intelligence to detect MYC translocation in slides of diffuse large B-cell lymphoma. Virchows Arch. 2021;479(3):617–621. doi: 10.1007/s00428-020-02931-4.
  • El Hussein S, Chen P, Medeiros LJ, Wistuba II, Jaffray D, Wu J, Khoury JD. Artificial intelligence strategy integrating morphologic and architectural biomarkers provides robust diagnostic accuracy for disease progression in chronic lymphocytic leukemia. J Pathol. 2022;256(1):4–14. doi: 10.1002/path.5795.
  • El Achi H, Khoury JD. Artificial intelligence and digital microscopy applications in diagnostic hematopathology. Cancers. 2020;12(4):797. doi: 10.3390/cancers12040797.
  • Li D, Bledsoe JR, Zeng Y, Liu W, Hu Y, Bi K, Liang A, Li S. A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals. Nat Commun. 2020;11(1):6004. doi: 10.1038/s41467-020-19817-3.
  • Heckenbach I, Mkrtchyan GV, Ezra MB, Bakula D, Madsen JS, Nielsen MH, Oró D, Osborne B, Covarrubias AJ, Idda ML, et al. Nuclear morphology is a deep learning biomarker of cellular senescence. Nat Aging. 2022;2(8):742–755. doi: 10.1038/s43587-022-00263-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.