96
Views
0
CrossRef citations to date
0
Altmetric
Retina

Differences in Oxygen-Induced Retinopathy Susceptibility Between Two Sprague Dawley Rat Vendors: A Comparison of Retinal Transcriptomes

, , , , , , , & ORCID Icon show all
Pages 425-436 | Received 22 Aug 2023, Accepted 15 Dec 2023, Published online: 28 Dec 2023

References

  • Blencowe H, Lawn JE, Vazquez T, Fielder A, Gilbert C. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr Res. 2013;74(Suppl. 1):35–49. doi: 10.1038/pr.2013.205.
  • Madan A, Penn JS. Animal models of oxygen-induced retinopathy. Front Biosci. 2003;8:d1030–d1043. doi: 10.2741/1056.
  • Penn JS, Henry MM, Tolman BL. Exposure to alternating hypoxia and hyperoxia causes severe proliferative retinopathy in the newborn rat. Pediatr Res. 1994;36(6):724–731. doi: 10.1203/00006450-199412000-00007.
  • Hartnett ME. Pathophysiology and mechanisms of severe retinopathy of prematurity. Ophthalmology. 2015;122(1):200–210. doi: 10.1016/j.ophtha.2014.07.050.
  • Barnett JM, Yanni SE, Penn JS. The development of the rat model of retinopathy of prematurity. Doc Ophthalmol. 2010;120(1):3–12. doi: 10.1007/s10633-009-9180-y.
  • van Wijngaarden P, Brereton HM, Gibbins IL, Coster DJ, Williams KA. Kinetics of strain-dependent differential gene expression in oxygen-induced retinopathy in the rat. Exp Eye Res. 2007;85(4):508–517. doi: 10.1016/j.exer.2007.07.001.
  • Tea M, Fogarty R, Brereton HM, Michael MZ, Van der Hoek MB, Tsykin A, Coster DJ, Williams KA. Gene expression microarray analysis of early oxygen-induced retinopathy in the rat. J Ocul Biol Dis Infor. 2009;2(4):190–201. doi: 10.1007/s12177-009-9041-7.
  • Kitzmann A, Leske D, Chen Y, Kendall A, Lanier W, Holmes J. Incidence and severity of neovascularization in oxygen- and metabolic acidosis-induced retinopathy depend on rat source. Curr Eye Res. 2002;25(4):215–220. doi: 10.1076/ceyr.25.4.215.13483.
  • O'Bryhim BE, Radel J, MacDonald SJ, Symons RC. The genetic control of avascular area in mouse oxygen-induced retinopathy. Mol Vis. 2012;18:377–389.
  • Lutty GA, Chan-Ling T, Phelps DL, Adamis AP, Berns KI, Chan CK, Cole CH, D'Amore PA, Das A, Deng WT, et al. Proceedings of the Third International Symposium on Retinopathy of Prematurity: an update on ROP from the lab to the nursery (November 2003, Anaheim, California). Mol Vis. 2006;12:532–580.
  • Holmes JM, Duffner LA. The effect of postnatal growth retardation on abnormal neovascularization in the oxygen exposed neonatal rat. Curr Eye Res. 1996;15(4):403–409. doi: 10.3109/02713689608995831.
  • Hartnett ME, Penn JS. Mechanisms and management of retinopathy of prematurity. N Engl J Med. 2012;367(26):2515–2526. doi: 10.1056/NEJMra1208129.
  • Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD, Corbett R, Tang MJ, Hou YC, Pugh TJ, et al. Alternative expression analysis by RNA sequencing. Nat Methods. 2010;7(10):843–847. doi: 10.1038/nmeth.1503.
  • Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, Therneau TM, Smith DI, Poland GA, Wieben ED, et al. 3′ tag digital gene expression profiling of human brain and universal reference RNA using Illumina genome analyzer. BMC Genomics. 2009;10:531.
  • Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, Sim S, Clarke MF, et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods. 2014;11(1):41–46. doi: 10.1038/nmeth.2694.
  • Shi Y, He M. Differential gene expression identified by RNA-seq and qPCR in two sizes of pearl oyster (Pinctada fucata). Gene. 2014;538(2):313–322. doi: 10.1016/j.gene.2014.01.031.
  • Wang Y, Wang Y, Xue K, Gao F, Li C, Fang H. Elevated reactivity of apelin inhibited renal fibrosis induced by chronic intermittent hypoxia. Arch Biochem Biophys. 2021;711:109021. doi: 10.1016/j.abb.2021.109021.
  • Adzigbli L, Sokolov EP, Wimmers K, Sokolova IM, Ponsuksili S. Effects of hypoxia and reoxygenation on mitochondrial functions and transcriptional profiles of isolated brain and muscle porcine cells. Sci Rep. 2022;12(1):19881. doi: 10.1038/s41598-022-24386-0.
  • Batra S, Perelman N, Luck LR, Shimada H, Malik P. Pediatric tumor cells express erythropoietin and a functional erythropoietin receptor that promotes angiogenesis and tumor cell survival. Lab Invest. 2003;83(10):1477–1487. doi: 10.1097/01.lab.0000090156.94795.48.
  • Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2011;2(12):1117–1133. doi: 10.1177/1947601911423654.
  • Lundqvist A, Sandstedt M, Sandstedt J, Wickelgren R, Hansson GI, Jeppsson A, Hultén LM. The arachidonate 15-lipoxygenase enzyme product 15-hete is present in heart tissue from patients with ischemic heart disease and enhances clot formation. PLOS One. 2016;11(8):e0161629. doi: 10.1371/journal.pone.0161629.
  • Sandstedt M, Rotter Sopasakis V, Lundqvist A, Vukusic K, Oldfors A, Dellgren G, Sandstedt J, Hultén LM. Hypoxic cardiac fibroblasts from failing human hearts decrease cardiomyocyte beating frequency in an ALOX15 dependent manner. PLOS One. 2018;13(8):e0202693. doi: 10.1371/journal.pone.0202693.
  • Ma J, Guo Z, Yang X, Zhu Y. Exploration of various roles of hypoxia genes in osteosarcoma. Sci Rep. 2022;12(1):18293. doi: 10.1038/s41598-022-17622-0.
  • Lo CH, Li LC, Yang SF, Tsai CF, Chuang YT, Chu HJ, Ueng KC. MicroRNA Let-7a, -7e and -133a attenuate hypoxia-induced atrial fibrosis via targeting collagen expression and the JNK pathway in HL1 cardiomyocytes. Int J Mol Sci. 2022;23(17):9636. doi: 10.3390/ijms23179636.
  • Feng J, Zhou Y, Zhang X, Jiang Y. Vascular endothelial growth factor and apelin in plasma of patients with retinopathy of prematurity. Acta Ophthalmol. 2017;95(6):e514–e515. doi: 10.1111/aos.13297.
  • Tan W, Li B, Wang Z, Zou J, Jia Y, Yoshida S, Zhou Y. Novel potential biomarkers for retinopathy of prematurity. Front Med. 2022;9:840030. doi: 10.3389/fmed.2022.840030.
  • Kornberg LJ, Shaw LC, Spoerri PE, Caballero S, Grant MB. Focal adhesion kinase overexpression induces enhanced pathological retinal angiogenesis. Invest Ophthalmol Vis Sci. 2004;45(12):4463–4469. doi: 10.1167/iovs.03-1201.
  • Cekmez F, Pirgon O, Aydemir G, Dundar B, Cekmez Y, Karaoglu A, Fidanc K, Tunc T, Aydinoz S, Karademir F, et al. Correlation between cord blood apelin and IGF-1 levels in retinopathy of prematurity. Biomark Med. 2012;6(6):821–825. doi: 10.2217/bmm.12.82.
  • Zhang Y, Jiang Y-r, Lu Q, Yin H, Tao Y. Apelin in epiretinal fibrovascular membranes of patients with retinopathy of prematurity and the changes after intravitreal bevacizumab. Retina. 2013;33(3):613–620. doi: 10.1097/IAE.0b013e31826d3a76.
  • Markasz L, Olsson KW, Holmström G, Sindelar R. Cluster analysis of early postnatal biochemical markers may predict development of retinopathy of prematurity. Transl Vis Sci Technol. 2020;9(13):14. doi: 10.1167/tvst.9.13.14.
  • Recchia FM, Xu L, Penn JS, Boone B, Dexheimer PJ. Identification of genes and pathways involved in retinal neovascularization by microarray analysis of two animal models of retinal angiogenesis. Invest Ophthalmol Vis Sci. 2010;51(2):1098–1105. doi: 10.1167/iovs.09-4006.
  • Eyries M, Siegfried G, Ciumas M, Montagne K, Agrapart M, Lebrin F, Soubrier F. Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ Res. 2008;103(4):432–440. doi: 10.1161/CIRCRESAHA.108.179333.
  • Kidoya H, Takakura N. Biology of the apelin–APJ axis in vascular formation. J Biochem. 2012;152(2):125–131. doi: 10.1093/jb/mvs071.
  • Zhang J, Liu Q, Hu X, Fang Z, Huang F, Tang L, Zhou S. Apelin/APJ signaling promotes hypoxia-induced proliferation of endothelial progenitor cells via phosphoinositide-3 kinase/Akt signaling. Mol Med Rep. 2015;12(3):3829–3834. doi: 10.3892/mmr.2015.3866.
  • He L, Xu J, Chen L, Li L. Apelin/APJ signaling in hypoxia-related diseases. Clin Chim Acta. 2015;451(Pt B):191–198. doi: 10.1016/j.cca.2015.09.029.
  • Ali YF, El-Morshedy S, Imam AA, Abdelrahman NI, Elsayed RM, Alkholy UM, Abdalmonem N, Shehab MM. The role of serum apelin in retinopathy of prematurity. Clin Ophthalmol. 2017;11:387–392. doi: 10.2147/OPTH.S127943.
  • Ronkainen V-P, Ronkainen JJ, Hänninen SL, Leskinen H, Ruas JL, Pereira T, Poellinger L, Vuolteenaho O, Tavi P. Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J. 2007;21(8):1821–1830. doi: 10.1096/fj.06-7294com.
  • Gileta AF, Fitzpatrick CJ, Chitre AS, St Pierre CL, Joyce EV, Maguire RJ, McLeod AM, Gonzales NM, Williams AE, Morrow JD, et al. Genetic characterization of outbred Sprague Dawley rats and utility for genome-wide association studies. PLoS Genet. 2022;18(5):e1010234. doi: 10.1371/journal.pgen.1010234.
  • Brower M, Grace M, Kotz CM, Koya V. Comparative analysis of growth characteristics of Sprague Dawley rats obtained from different sources. Lab Anim Res. 2015;31(4):166–173. doi: 10.5625/lar.2015.31.4.166.
  • Tsuda MC, Mahdi S, Namchuk A, Wu TJ, Lucki I. Vendor differences in anxiety-like behaviors in female and male Sprague Dawley rats. Physiol Behav. 2020;227:113131. doi: 10.1016/j.physbeh.2020.113131.
  • Caine SB, Plant S, Furbish K, Yerton M, Smaragdi E, Niclou B, Lorusso JM, Chang JY, Bitter C, Basu A, et al. Sprague Dawley rats from different vendors vary in the modulation of prepulse inhibition of startle (PPI) by dopamine, acetylcholine, and glutamate drugs. Psychopharmacology. 2023;240(9):2005–2012. doi: 10.1007/s00213-023-06444-1.
  • Skondra D, Rodriguez SH, Sharma A, Gilbert J, Andrews B, Claud EC. The early gut microbiome could protect against severe retinopathy of prematurity. J AAPOS. 2020;24(4):236–238. doi: 10.1016/j.jaapos.2020.03.010.
  • Caporali P, Cutuli D, Gelfo F, Laricchiuta D, Foti F, De Bartolo P, Angelucci F, Petrosini L. Interaction does count: a cross-fostering study on transgenerational effects of pre-reproductive maternal enrichment. Front Behav Neurosci. 2015;9:320. doi: 10.3389/fnbeh.2015.00320.
  • Hartnett ME. The effects of oxygen stresses on the development of features of severe retinopathy of prematurity: knowledge from the 50/10 OIR model. Doc Ophthalmol. 2010;120(1):25–39. doi: 10.1007/s10633-009-9181-x.
  • Penn JS, Henry MM, Wall PT, Tolman BL. The range of PaO2 variation determines the severity of oxygen-induced retinopathy in newborn rats. Invest Ophthalmol Vis Sci. 1995;36(10):2063–2070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.