15
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Genetic Variants of Long Noncoding RNA MEG3 and Its Association to the Clinical Features of Diabetic Retinopathy

, , , , &
Received 30 May 2023, Accepted 25 Apr 2024, Published online: 08 May 2024

References

  • Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239–2251. doi: 10.1016/S0140-6736(17)30058-2.
  • Ahmad E, Lim S, Lamptey R, Webb DR, Davies MJ. Type 2 diabetes. Lancet. 2022;400(10365):1803–1820. doi: 10.1016/S0140-6736(22)01655-5.
  • Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–136. doi: 10.1016/S0140-6736(09)62124-3.
  • Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, Bikbov MM, Wang YX, Tang Y, Lu Y, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology. 2021;128(11):1580–1591. doi: 10.1016/j.ophtha.2021.04.027.
  • Sabanayagam C, Banu R, Chee ML, Lee R, Wang YX, Tan G, Jonas JB, Lamoureux EL, Cheng CY, Klein BEK, et al. Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol. 2019;7(2):140–149. doi: 10.1016/S2213-8587(18)30128-1.
  • Lin KY, Hsih WH, Lin YB, Wen CY, Chang TJ. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. J Diabetes Investig. 2021;12(8):1322–1325. doi: 10.1111/jdi.13480.
  • Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19(6):1816. doi: 10.3390/ijms19061816.
  • Song P, Yu J, Chan KY, Theodoratou E, Rudan I. Prevalence, risk factors and burden of diabetic retinopathy in China: a systematic review and meta-analysis. J Glob Health. 2018;8(1):010803.
  • Yin L, Zhang D, Ren Q, Su X, Sun Z. Prevalence and risk factors of diabetic retinopathy in diabetic patients: a community based cross-sectional study. Medicine (Baltimore)). 2020;99(9):e19236. doi: 10.1097/MD.0000000000019236.
  • Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O’Neal DN, Januszewski AS. Biomarkers in Diabetic Retinopathy. Rev Diabet Stud. 2015;12(1-2):159–195. doi: 10.1900/RDS.2015.12.159.
  • Ting DS, Tan KA, Phua V, Tan GS, Wong CW, Wong TY. Biomarkers of diabetic retinopathy. Curr Diab Rep. 2016;16(12):125. doi: 10.1007/s11892-016-0812-9.
  • Lee CM, Yang YS, Kornelius E, Huang CN, Hsu MY, Lee CY, Peng SY, Yang SF. Association of long non-coding RNA growth arrest-specific 5 genetic variants with diabetic retinopathy. Genes (Basel). 2022;13(4):584. doi: 10.3390/genes13040584.
  • Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377–390. doi: 10.1038/s41581-020-0278-5.
  • Ghafouri-Fard S, Taheri M. Maternally expressed gene 3 (MEG3): a tumor suppressor long non coding RNA. Biomed Pharmacother. 2019;118:109129. doi: 10.1016/j.biopha.2019.109129.
  • Tu Y, Zhu M, Wang Z, Wang K, Chen L, Liu W, Shi Q, Zhao Q, Sun Y, Wang X, et al. Melatonin inhibits Müller cell activation and pro-inflammatory cytokine production via upregulating the MEG3/miR-204/Sirt1 axis in experimental diabetic retinopathy. J Cell Physiol. 2020;235(11):8724–8735. doi: 10.1002/jcp.29716.
  • Zhao Y, Chen X, Tong XL. Effect of lncRNA MEG3 on retinopathy in diabetic rats through regulating Fox01 expression. Eur Rev Med Pharmacol Sci. 2019;23(21):9163–9170.
  • Kim Y, Lee M. Deep learning approaches for lncRNA-mediated mechanisms: a comprehensive review of recent developments. Int J Mol Sci. 2023;24(12):10299.
  • Dieter C, Lemos NE, Corrêa NRdF, Assmann TS, Crispim D. The impact of lncRNAs in diabetes mellitus: a systematic review and in silico analyses. Front Endocrinol (Lausanne)). 2021;12:602597. doi: 10.3389/fendo.2021.602597.
  • Wang W, Xiong W, Zheng J, Jin Y, Dong L, Feng X, Ban Y, Chen B. The contribution of MALAT1 gene rs3200401 and MEG3 gene rs7158663 to the risk of lung, colorectal, gastric and liver cancer. Pathol Res Pract. 2022;240:154212. doi: 10.1016/j.prp.2022.154212.
  • Tong P, Peng QH, Gu LM, Xie WW, Li WJ. LncRNA-MEG3 alleviates high glucose induced inflammation and apoptosis of retina epithelial cells via regulating miR-34a/SIRT1 axis. Exp Mol Pathol. 2019;107:102–109. doi: 10.1016/j.yexmp.2018.12.003.
  • Chen J, Liao L, Xu H, Zhang Z, Zhang J. Long non-coding RNA MEG3 inhibits neovascularization in diabetic retinopathy by regulating microRNA miR-6720-5p and cytochrome B5 reductase 2. Bioengineered. 2021;12(2):11872–11884. doi: 10.1080/21655979.2021.2000721.
  • Classification and Diagnosis of Diabetes: standards of Medical Care in Diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S17–s38.
  • Yonekawa Y, Modi YS, Kim LA, Skondra D, Kim JE, Wykoff CC. American Society of Retina Specialists Clinical Practice Guidelines on the management of nonproliferative and proliferative diabetic retinopathy without diabetic macular edema. J Vitreoretin Dis. 2020;4(2):125–135. doi: 10.1177/2474126419893829.
  • Zheng Y, Wang M, Wang S, Xu P, Deng Y, Lin S, Li N, Liu K, Zhu Y, Zhai Z, et al. LncRNA MEG3 rs3087918 was associated with a decreased breast cancer risk in a Chinese population: a case-control study. BMC Cancer. 2020;20(1):659. doi: 10.1186/s12885-020-07145-0.
  • Hou Y, Zhang B, Miao L, Ji Y, Yu Y, Zhu L, Ma H, Yuan H. Association of long non-coding RNA MEG3 polymorphisms with oral squamous cell carcinoma risk. Oral Dis. 2019;25(5):1318–1324. doi: 10.1111/odi.13103.
  • Chen K, Wang X, Qu S, Wang Z, Shao Y, Xu G, Lu L, Bi Y, Wang Z. Weighted gene co-expression network analysis to identify ferroptosis-related hub genes and their potential ceRNA networks in diabetic retinopathy. Exp Eye Res. 2023;233:109525. doi: 10.1016/j.exer.2023.109525.
  • Liu Y, Yue P, Zhou T, Zhang F, Wang H, Chen X. LncRNA MEG3 enhances (131)I sensitivity in thyroid carcinoma via sponging miR-182. Biomed Pharmacother. 2018;105:1232–1239. doi: 10.1016/j.biopha.2018.06.087.
  • Shaker O, Ayeldeen G, Abdelhamid A. The impact of single nucleotide polymorphism in the long non-coding MEG3 gene on MicroRNA-182 and MicroRNA-29 expression levels in the development of breast cancer in Egyptian women. Front Genet. 2021;12:683809. doi: 10.3389/fgene.2021.683809.
  • Chong YH, Fan Q, Tham YC, Gan A, Tan SP, Tan G, Wang JJ, Mitchell P, Wong TY, Cheng CY. Type 2 diabetes genetic variants and risk of diabetic retinopathy. Ophthalmology. 2017;124(3):336–342. doi: 10.1016/j.ophtha.2016.11.016.
  • Di Y, Wang Y, Wang YX, Wang X, Ma Y, Nie QZ. Maternally expressed gene 3 regulates retinal neovascularization in retinopathy of prematurity. Neural Regen Res. 2022;17(6):1364–1368. doi: 10.4103/1673-5374.327358.
  • Buraczynska M, Zakrocka I. Arginase gene polymorphism increases risk of diabetic retinopathy in type 2 diabetes mellitus patients. J Clin Med. 2021;10(22):5407. doi: 10.3390/jcm10225407.
  • Singh K, Goyal P, Singh M, Deshmukh S, Upadhyay D, Kant S, Agrawal NK, Gupta SK, Singh K. Association of functional SNP-1562C > T in MMP9 promoter with proliferative diabetic retinopathy in north Indian type 2 diabetes mellitus patients. J Diabetes Complications. 2017;31(12):1648–1651. doi: 10.1016/j.jdiacomp.2017.08.010.
  • Mankoč Ramuš S, Kumše T, Globočnik Petrovič M, Petrovič D, Cilenšek I. SNP rs2073618 of the osteoprotegerin gene is associated with diabetic retinopathy in Slovenian patients with type 2 diabetes. Biomed Res Int. 2013;2013:364073–364076. doi: 10.1155/2013/364073.
  • Luo R, Jin H, Li L, Hu YX, Xiao F. Long noncoding RNA MEG3 inhibits apoptosis of retinal pigment epithelium cells induced by high glucose via the miR-93/Nrf2 axis. Am J Pathol. 2020;190(9):1813–1822. doi: 10.1016/j.ajpath.2020.05.008.
  • Xiao F, Li L, Fu JS, Hu YX, Luo R. Regulation of the miR-19b-mediated SOCS6-JAK2/STAT3 pathway by lncRNA MEG3 is involved in high glucose-induced apoptosis in hRMECs. Biosci Rep. 2020;40(7):BSR20194370.
  • Fan G, Gu Y, Zhang J, Xin Y, Shao J, Giampieri F, Battino M. Transthyretin upregulates long non-coding RNA MEG3 by affecting PABPC1 in diabetic retinopathy. Int J Mol Sci. 2019;20(24):6313.
  • He Y, Dan Y, Gao X, Huang L, Lv H, Chen J. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway. Am J Physiol Endocrinol Metab. 2021;320(3):E598–E608. doi: 10.1152/ajpendo.00089.2020.
  • Qiu GZ, Tian W, Fu HT, Li CP, Liu B. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction. Biochem Biophys Res Commun. 2016;471(1):135–141. doi: 10.1016/j.bbrc.2016.01.164.
  • Gao X, Li X, Zhang S, Wang X. The association of MEG3 gene rs7158663 polymorphism with cancer susceptibility. Front Oncol. 2021;11:796774. doi: 10.3389/fonc.2021.796774.
  • Wei GH, Wang X. lncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway. Eur Rev Med Pharmacol Sci. 2017;21(17):3850–3856.
  • Cao X, Zhuang S, Hu Y, Xi L, Deng L, Sheng H, Shen W. Associations between polymorphisms of long non-coding RNA MEG3 and risk of colorectal cancer in Chinese. Oncotarget. 2016;7(14):19054–19059. doi: 10.18632/oncotarget.7764.
  • Wang H, Li J, Cheng Y, Yao J. Association of long-chain noncoding RNA H19 and MEG3 gene polymorphisms and their interaction with risk of osteoarthritis in a Chinese Han population. Genet Test Mol Biomarkers. 2020;24(6):328–337. doi: 10.1089/gtmb.2019.0230.
  • Dieter C, Lemos NE, Girardi E, Ramos DT, Pellenz FM, Canani LH, Assmann TS, Crispim D. The rs3931283/PVT1 and rs7158663/MEG3 polymorphisms are associated with diabetic kidney disease and markers of renal function in patients with type 2 diabetes mellitus. Mol Biol Rep. 2023; 50 (3):2159–2169. doi: 10.1007/s11033-022-08122-5.
  • Zhong C, Yao Q, Han J, Yang J, Jiang F, Zhang Q, Zhou H, Hu Y, Wang W, Zhang Y, et al. SNP rs322931 (C > T) in miR-181b and rs7158663 (G > A) in MEG3 aggravate the inflammatory response of anal abscess in patients with Crohn’s disease. Aging (Albany NY)). 2022;14(7):3313–3324. doi: 10.18632/aging.204014.
  • Blaya D, Coll M, Rodrigo-Torres D, Vila-Casadesús M, Altamirano J, Llopis M, Graupera I, Perea L, Aguilar-Bravo B, Díaz A, et al. Integrative microRNA profiling in alcoholic hepatitis reveals a role for microRNA-182 in liver injury and inflammation. Gut. 2016;65(9):1535–1545. doi: 10.1136/gutjnl-2015-311314.
  • Bai L, Luo L, Gao W, Bu C, Huang J. miR-182 modulates cell proliferation and invasion in prostate cancer via targeting ST6GALNAC5. Braz J Med Biol Res. 2021;54(8):e9695. doi: 10.1590/1414-431X2020e9695.
  • Ma C, He D, Tian P, Wang Y, He Y, Wu Q, Jia Z, Zhang X, Zhang P, Ying H, et al. miR-182 targeting reprograms tumor-associated macrophages and limits breast cancer progression. Proc Natl Acad Sci U S A. 2022;119(6):e2114006119.
  • Wu M, Zhang Y. MiR-182 inhibits proliferation, migration, invasion and inflammation of endometrial stromal cells through deactivation of NF-κB signaling pathway in endometriosis. Mol Cell Biochem. 2021;476(3):1575–1588. doi: 10.1007/s11010-020-03986-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.