13
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Dual-Modal Fusion Network Using Optical Coherence Tomography and Fundus Images in Detection of Glaucomatous Optic Neuropathy

, , &
Received 03 May 2024, Accepted 27 Jun 2024, Published online: 09 Jul 2024

References

  • Quigley HA. Glaucoma. Lancet. 2011;377(9774):1367–1377. doi: 10.1016/S0140-6736(10)61423-7.
  • Dervisevic E, Pavljasevic S, Dervisevic A, Kasumovic SS. Challenges in early glaucoma detection. Med Arch. 2016;70(3):203–207. doi: 10.5455/medarh.2016.70.203-207.
  • Yang HK, Kim YJ, Sung JY, Kim DH, Kim KG, Hwang JM. Efficacy for differentiating nonglaucomatous versus glaucomatous optic neuropathy using deep learning systems. Am J Ophthalmol. 2020;216:140–146. doi: 10.1016/j.ajo.2020.03.035.
  • Chen H, Chen X, Qiu Z, Xiang D, Chen W, Shi F, Zheng J, Zhu W, Sonka M. Quantitative analysis of retinal layers’ optical intensities on 3D optical coherence tomography for central retinal artery occlusion. Sci Rep. 2015;5(1):9269. doi: 10.1038/srep09269.
  • Liu X, Yang Z, Wang JA. Novel noise reduction method for optical coherence tomography images. CISP-BMEI (pp. 167–171), 2016. Available from: https://ieeexplore.ieee.org/document/7852702.
  • Regatieri CV, Branchini L, Fujimoto JG, Duker JS. Choroidal imaging using spectral-domain optical coherence tomography. Retina. 2012;32(5):865–876. doi: 10.1097/IAE.0b013e318251a3a8.
  • Sakata LM, Deleon-Ortega J, Sakata V, Girkin CA. Optical coherence tomography of the retina and optic nerve – a review. Clin Exp Ophthalmol. 2009;37(1):90–99. doi: 10.1111/j.1442-9071.2009.02015.x.
  • Zhu TP, Tong YH, Zhan HJ, Ma J. Update on retinal vessel structure measurement with spectral-domain optical coherence tomography. Microvasc Res. 2014;95:7–14. doi: 10.1016/j.mvr.2014.06.007.
  • Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol. 2014;98(Suppl. 2):ii15–ii19. doi: 10.1136/bjophthalmol-2013-304326.
  • Kim SJ, Cho KJ, Oh S. Development of machine learning models for diagnosis of glaucoma. PLOS One. 2017;12(5):e0177726. doi: 10.1371/journal.pone.0177726.
  • Rebolleda G, Leal-Fonseca M, Moreno-Montañés J, Casas-Llera P, Muñoz-Negrete FJ. Diagnostic classification of macular ganglion cell and retinal nerve fiber layer analysis: differentiation of false-positives from glaucoma. Ophthalmology. 2015;122(7):e43–e44. doi: 10.1016/j.ophtha.2014.09.031.
  • Ramsay JO, Silverman BW. Functional data analysis. 2006.
  • Leal-Fonseca M, Rebolleda G, Oblanca N, Moreno-Montañes J, Muñoz-Negrete FJ. A comparison of false positives in retinal nerve fiber layer, optic nerve head and macular ganglion cell-inner plexiform layer from two spectral-domain optical coherence tomography devices. Graefes Arch Clin Exp Ophthalmol. 2014;252(2):321–330. doi: 10.1007/s00417-013-2529-7.
  • Larrosa JM, Polo V, Ferreras A, García-Martín E, Calvo P, Pablo LE. Neural network analysis of different segmentation strategies of nerve fiber layer assessment for glaucoma diagnosis. J Glaucoma. 2015;24(9):672–678. doi: 10.1097/IJG.0000000000000071.
  • Li T, Bo W, Hu C, Kang H, Liu H, Wang K, Fu H. Applications of deep learning in fundus images: a review. Med Image Anal. 2021;69:101971. doi: 10.1016/j.media.2021.101971.
  • Bock R, Meier J, Nyúl LG, Hornegger J, Michelson G. Glaucoma risk index: automated glaucoma detection from color fundus images. Med Image Anal. 2010;14(3):471–481. doi: 10.1016/j.media.2009.12.006.
  • Dua S, Acharya UR, Chowriappa P, Sree SV. Wavelet-based energy features for glaucomatous image classification. IEEE Trans Inf Technol Biomed. 2012;16(1):80–87. doi: 10.1109/TITB.2011.2176540.
  • Noronha KP, Acharya UR, Nayak KP, Martis RJ, Bhandary SV. Automated classification of glaucoma stages using higher order cumulant features. Biomed Signal Process Control. 2014;10(1):174–183. doi: 10.1016/j.bspc.2013.11.006.
  • Acharya UR, Ng EY, Eugene LW, Noronha K, Min LC, Nayak K, Bhandary SV. Decision support system for the glaucoma using Gabor transformation. Biomed Signal Process Control. 2015;15:18–26. doi: 10.1016/j.bspc.2014.09.004.
  • Chen X, Xu Y, Yan S, Wong DW, Wong TY, Liu J. Automatic feature learning for glaucoma detection based on deep learning. In: Navab N, Hornegger J, Wells W, Frangi A (Ed). Medical image computing and computer-assisted intervention – MICCAI 2015. Lecture notes in computer science, vol. 9351, 2015. doi: 10.1007/978-3-319-24574-4_80.
  • Orlando JI, Prokofyeva E, del Fresno M, Blaschko MB. Convolutional neural network transfer for automated glaucoma identification. Proc. 2017 Jan SPIE 10160, 12th International Symposium on Medical Information Processing and Analysis, 101600U. 2017. doi: 10.1117/12.2255740.
  • Fu H, Cheng J, Xu Y, Zhang C, Wong DWK, Liu J, Cao X. Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans Med Imaging. 2018;37(11):2493–2501. doi: 10.1109/TMI.2018.2837012.
  • Xu Y, Hu M, Liu H, Yang H, Wang H, Lu S, Liang T, Li X, Xu M, Li L, et al. A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis. NPJ Digit Med. 2021; 4(1):48. doi: 10.1038/s41746-021-00417-4.
  • Lundberg SM, Lee S. A unified approach to interpreting model predictions. Neural information processing systems. 2017.
  • Selvaraju RR, Das A, Vedantam R, Cogswell M, Parikh D, Batra D. Grad-CAM: visual Explanations from deep networks via gradient-based localization. Int J Comput Vis. 2016;128(2):336–359. doi: 10.1007/s11263-019-01228-7.
  • Babenko B, Mitani A, Traynis I, Kitade N, Singh P, Maa AY, Cuadros J, Corrado GS, Peng L, Webster DR, et al. Detection of signs of disease in external photographs of the eyes via deep learning. Nat Biomed Eng. 2022;6(12):1370–1383. doi: 10.1038/s41551-022-00867-5.
  • Xiao W, Huang X, Wang JH, Lin DR, Zhu Y, Chen C, Yang YH, Xiao J, Zhao LQ, Li JO, et al. Screening and identifying hepatobiliary diseases through deep learning using ocular images: a prospective, multicentre study. Lancet Digit Health. 2021;3(2):e88–e97. doi: 10.1016/S2589-7500(20)30288-0.
  • Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology. 2018;125(8):1199–1206. doi: 10.1016/j.ophtha.2018.01.023.
  • Liu H, Li L, Wormstone IM, Qiao C, Zhang C, Liu P, Li S, Wang H, Mou D, Pang R, et al. Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs. JAMA Ophthalmol. 2019;137(12):1353–1360. Erratum in: JAMA Ophthalmol. 2019;137(12):1468. doi: 10.1001/jamaophthalmol.2019.3501.
  • Asaoka R, Murata H, Hirasawa K, Fujino Y, Matsuura M, Miki A, Kanamoto T, Ikeda Y, Mori K, Iwase A, et al. Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images. Am J Ophthalmol. 2019;198:136–145. doi: 10.1016/j.ajo.2018.10.007.
  • Ran AR, Tham CC, Chan PP, Cheng CY, Tham YC, Rim TH, Cheung CY. Deep learning in glaucoma with optical coherence tomography: a review. Eye. 2021;35(1):188–201. doi: 10.1038/s41433-020-01191-5.
  • Asaoka R, Murata H, Iwase A, Araie M. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology. 2016;123(9):1974–1980. doi: 10.1016/j.ophtha.2016.05.029.
  • Wu JH, Nishida T, Weinreb RN, Lin JW. Performances of machine learning in detecting glaucoma using fundus and retinal optical coherence tomography images: a meta-analysis. Am J Ophthalmol. 2022;237:1–12. doi: 10.1016/j.ajo.2021.12.008.
  • Xiong J, Li F, Song D, Tang G, He J, Gao K, Zhang H, Cheng W, Song Y, Lin F, et al. Multimodal machine learning using visual fields and peripapillary circular OCT scans in detection of glaucomatous optic neuropathy. Ophthalmology. 2022;129(2):171–180. doi: 10.1016/j.ophtha.2021.07.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.