1,163
Views
37
CrossRef citations to date
0
Altmetric
Articles

Modeling stream flow and sediment yield using the SWAT model: a case study of Ankara River basin, Turkey

ORCID Icon, &
Pages 264-289 | Received 22 Sep 2016, Accepted 11 Jun 2017, Published online: 28 Jun 2017

References

  • Abbas, T. , Nabi, G. , Boota, M. W. , Hussain, F. , Azam, M. I. , Jin, H. , & Faisal, M. (2016). Uncertainty analysis of runoff and sedimentation in a forested watershed using sequential uncertainty fitting method. Sciences in Cold and Arid Regions , 8 , 0297–0310. doi:10.3724/SP.J.1226.2016.00297
  • Abbaspour, K. C. , Rouholahnejad, E. , Vaghefi, S. , Srinivasan, R. , Yang, H. , & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology , 524 , 733–752. doi:10.1016/j.jhydrol.2015.03.027 10.1016/j.jhydrol.2015.03.027
  • Abril, B. , & Knight, D. W. (2004). Stabilising the Paute river in Ecuador. Proceedings of the Institute of Civil Engineers – Civil Engineering , 156 , 32–38.10.1680/cien.2004.157.1.32
  • Ahl, R. S. , Woods, S. W. , & Zuuring, H. R. (2008). Hydrologic calibration and validation of SWAT in a snow-dominated Rocky Mountain watershed, Montana, U.S.A. Journal of the American Water Resources Association (JAWRA) , 50 , 1226–1241. doi:10.1111/jawr.12182
  • Ahmadi, M. , Arabi, M. , Ascough, J. C. , Fontane, D. G. , & Engel, B. A. (2014). Toward improved calibration of watershed models: Multisite multi-objective measures of information. Environmental Modelling & Software , 59 , 135–145. doi:10.1016/j.envsoft.2014.05.012
  • Ahmadi, M. , Records, R. , & Arabi, M. (2014b). Impact of climate change on diffuse pollutant fluxes at the watershed scale. Hydrological Processes , 28 , 1962–1972. doi:10.1002/hyp.9723
  • Akiner, M. E., & Akkoyunlu, A. (2012). Modeling and forecasting river flow rate from the Melen Watershed, Turkey. Journal of Hydrology , 456 , 121–129.10.1016/j.jhydrol.2012.06.031
  • Arabi, M. , Frankenberger, J. , Engel, B. A. , & Arnold, J. G. (2008). Representation of agricultural management practices with SWAT. Hydrological Processes , 22 , 3042–3055.10.1002/hyp.v22:16
  • Arnold, J. G. , Kiniry, J. R. , Srinivasan, R. , Williams, J. R. , Haney, E. B. , & Neitsch, S. L. (2012). Soil and water assessment tool ınput/output documentation version 2012 . Texas Water Resources Institute Technical Report 436. College Station, TX: Texas A&M University System. Retrieved December 17, 2014 from http://swat.tamu.edu/documentation/2012-io/
  • Arnold, J. G. , Srinivasan, R. , Muttiah, R. S. , & Williams, J. R. (1998). Large area hydrologic modeling and assessment: Part I. Model development. Journal of American Water Resources Association , 34 , 73–89.10.1111/jawr.1998.34.issue-1
  • Babel, M. S. , Shrestha, B. , & Perret, S. (2011). Hydrological impact of biofuel production: A case study of the Khlong Phlo Watershed in Thailand. Agricultural Water Management , 101 , 8–26.10.1016/j.agwat.2011.08.019
  • Beasley, D. B. , & Huggins, L. F. (1981). ANSWERS user’s manual . EPA-905/9-82-001. Chicago, IL: USEPA.
  • Betrie, G. D. , Mohamed, Y. A. , van Griensven, A. , & Srinivasan, R. (2011). Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrology and Earth System Sciences , 15 , 807–818. doi:10.5194/hess-15-807-2011
  • Bicknell, B. R. , Imhoff, J. C. , Donigian, A. S. , & Johanson, R. C. (1997). Hydrological Simulation Program – FORTRAN (HSPF), User’s manual for release 11 . EPA – 600/R-97/080. Athens, GA: U.S. Environmental Protection Agency.
  • Bicknell, B. R. , Imhoff, J. C. , Kittle, J. L. , Donigian, A. S. , Jobes, T. H. , & Johanson, R. C. (2001). Hydrological Simulation Program – FORTRAN, User’s manual for version 12 . Athens, GA: U.S. EPA, National Exposure Research Laboratory.
  • Bieger, K. , Hormann, G. , & Fohrer, N. (2014). Simulation of streamflow and sediment with the Soil and Water Assessment Tool model in a data scarce catchment in the Three Gorges Region, China. Journal of Environmental Quality , 43 , 37–45. doi:10.2134/jeq2011.0383
  • Bosch, D. D. , Sheridan, J. M. , Batten, H. L. , & Arnold, J. G. (2004). Evaluation Of The Swat Model On A Coastal Plain Agricultural Watershed. Transactions, ASAE , 47 , 1493–1506.10.13031/2013.17629
  • Bulut, E., & Aksoy, A. (2008). Impact of fertilizer usage on phosphorus loads to Lake Uluabat. Desalination , 226 , 289–297. doi:10.1016/j.desal.2007.02.112
  • Cerro, I. , Antiguedad, I. , Srinavasan, R. , Sauvage, S. , Volk, M. , & Sanchez-Perez, J. M. (2014). Simulating land management options to reduce nitrate pollution in an agricultural watershed dominated by an alluvial aquifer. Journal of Environmental Quality , 43 , 67–74. doi:10.2134/jeq2011.0393
  • Chakrapani, G. J. (2005). Factors controlling variations in river sediment loads. Current Science , 88 , 569–575.
  • Cheng, H. , Ouyang, W. , Hao, F. , Ren, X. , & Yang, S. (2007). The nonpoint-source pollution in livestock-breeding areas of the Heihe River basin in Yellow River. Stochastic Environmental Research and Risk Assessment , 21 , 213–221.10.1007/s00477-006-0057-2
  • Dile, Y. T., & Srinivasan, R. (2014). Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile River Basin. Journal of the American Water Resources Association (JAWRA) , 1–16 . doi:10.1111/jawr.12182
  • D.S.I. Report . (2005). Obtained by personal communication. State Hydraulic Works . Turkey.
  • Duru, U. (2015). Modeling sediment yield and deposition using SWAT model: a case study of Cubuk I and Cubuk II reservoirs, Turkey (Ph.D Dissertation). Fort Collins, CO: Colorado State University.
  • Duru, U. , Wohl, E. , & Ahmadi, M. (2017). Factors controlling sediment load in the Central Anatolia Region of Turkey: Ankara River basin. Environmental Management , 59 , 826–841. doi:10.1007/s00267-016-0818-8
  • Ebrahimpou, r M. , Balasundram, S. K. , Talib, J. , Anuar, A. R. , & Memarian, H. (2011). Accuracy of GeoWEPP in estimating sediment load and runoff from a tropical watershed. Malaysian Journal of Soil Science , 15 , 25–33.
  • Elirehema, Y. S. (2001). Soil water erosion modeling in selected watersheds in southern Spain (p. 42). Enschede: IFA, ITC.
  • El-Sadek, A., & Irvem, A. (2014). Evaluating the impact of land use uncertainty on the simulated streamflow and sediment yield of the Seyhan River basin using the SWAT model. Turkish Journal of Agriculture and Forestry , 38 , 515–530.10.3906/tar-1309-89
  • Fontaine, T. A. , Cruickshank, T. S. , Arnold, J. G. , & Hotchkiss, R. (2002). Development of snowfall-snowmelt routine for mountainous terrain for the Soil and Water Assessment Tool (SWAT). Journal of Hydrology , 262 , 209–223.10.1016/S0022-1694(02)00029-X
  • Foster, G. R. , & Meyer, L. D. (1977). Soil erosion and sedimentation by water – an overview. In Proceedings, national symposium on soil erosion and sedimentation by water (pp. 1–13). St. Joseph, MI: American Society of Agricultural Engineers.
  • Fuka, D. R. , Walter, M. T. , MacAlister, C. , Degaetano, A. T. , Steenhuis, T. S. , & Easton, Z. M. (2013). Using the climate forecast system reanalysis as weather input data for watershed models. Hydrological Processes , 28 , 5613–5623. doi:10.1002/hyp.10073
  • Gassman, P. W. , Reyes, M. R. , Green, C. H. , & Arnold, J. G. (2007). The soil and water assessment tool: Historical development, applications, and future research directions. Transactions ASABE , 50 , 1211–1250.10.13031/2013.23637
  • Gessesse, B. , Bewket, W. , & Bräuning, A. (2014). Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degradation and Development , 26 , 711–724. doi:10.1002/ldr.2276
  • Gitau, M. W., & Chaubey, I. (2010). Regionalization of SWAT model parameters for use in un-gaged watershed. Water , 2 , 849–871.10.3390/w2040849
  • Gungor, O., & Goncu, S. (2012). Application of the soil and water assessment tool model on the Lower Porsuk Stream Watershed. Hydrological Processes , 27 , 453–466.
  • Gungor, K. , Karakaya, N. , Evrendilek, F. , Akgul, S. , Baskan, O. , Cebel, H. , … Gumus, O. (2016). Spatiotemporal modeling of watershed nutrient transport dynamics: Implications for eutrophication abatement. Ecological Informatics , 34 , 52–69.10.1016/j.ecoinf.2016.04.012
  • Hao, F. H. , Zhang, X. S. , & Yang, Z. F. (2004). A distributed nonpoint-source pollution model: Calibration and validation in the Yellow River basin. Journal of Environmental Sciences , 16 , 646–650.
  • Ijam, A. Z., & Tarawneh, E. R. (2012). Assessment of sediment yield for Wala dam catchment area in Jordan. European Water , 38 , 43–58.
  • Janssen, P. H. M., & Heuberger, P. S. C. (1995). Calibration of process-oriented models. Ecological Modelling , 83 , 55–66.10.1016/0304-3800(95)00084-9
  • Jaroslav, M. H. , Marcel, R. S. , Gresaka, J. B. , & Geograficky, S. B. (1996). Modelling spatial and temporal changes of soil water erosion. Geograficky Casopic , 48 , 255–269.
  • Johnson, C. W. , Gordon, N. D. , & Hanson, C. L. (1986). Northwest rangeland sediment yield analysis by the MUSLE. Transactions ASAE , 26 , 1889–1895.
  • Khalil, A. , Gassman, P. W. , & Kanwar, R. (2002). Evaluation of the tile flow component of the SWAT model under different management systems . Working Paper 02-WP 303. Iowa State University: Center for Agricultural and Rural Development.10.13031/cil2002.2013
  • Kilonzo, F. N. (2014). Assessing the impacts of environmental changes on the water resources of the Upper Mara, Lake Victoria Basin ( PhD thesis). Vrije Universiteit Brussel and UNESCO-IHE Institute for Water Education, Delft.
  • Kirsch, K. J. , Kirsch, A. , & Arnold, J. G. (2002). Predicting sediment and phosphorus loads in the Rock River basin using SWAT. Transactions ASAE , 45 , 1757–1769.
  • Knisel, W. G. (1980). CREAMS: A field-scale model for chemicals, runoff, and erosion from agricultural management systems . Conservation Research Report No. 26. Washington, DC: United States Department of Agriculture, Science and Education Administration.
  • Laflen, J. M. , Elliot, W. J. , Simanton, J. R. , Holzhey, S. , & Kohl, K. D. (1991). WEPP soil erodibility experiments for rangeland and cropland soils. Journal Soil Water Conservation , 46 , 39–44.
  • Larose, M. , Heathman, G. C. , Norton, L. D. , & Engel, B. (2007). Hydrologic and atrazine simulation of the cedar creek watershed using the SWAT model. Journal of Environmental Quality , 36 , 521–531.10.2134/jeq2006.0154
  • Malagó, A. , Pagliero, L. , Bouraoui, F. , & Franchini, M. (2015). Comparing calibrated parameter sets of the SWAT model for the Scandinavian and Iberian peninsulas. Special Issue: Evaluation of Water Resources with SWAT, Hydrological Sciences Journal , 60 , 949–967.
  • Morgan, R. P. C. , Quinton, J. N. , Smith, R. E. , Govers, G. , Poesen, J. W. A. , Auerswald, K. , … Torri, D. (1998). The EUROSEM model. In J. B. Boardman & D. Favis-Mortlock (Eds.), Global change: Modelling soil erosion by water (pp. 373–382). NATO ASI series, Series 1: Global environmental change. London: Springer Verlag.
  • Moriasi, D. N. , Arnold, J. G. , Van Liew, M. W. , Binger, R. L. , Harmel, R. D. , & Veith, T. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the American Society of Agricultural and Biological Engineers , 50 , 885–900.
  • Morris, M. D. (1991). Fractional sampling plants for preliminary computational experiments. Technometrics , 33 , 161–174.10.1080/00401706.1991.10484804
  • Mosbahi, M. , Benabdallah, S. , & Boussema, M. R. (2011). Determination of critical source areas for sediment loss: Sarrath River Basin, Tunisia. International Journal of Civil and Environmental Engineering , 3 , 206–210.
  • Motovilov, Y. G. , Gottschalk, L. , Engeland, K. , & Rodhe, A. (1999). Validation of distributed hydrological model against spatial observations. Agricultural and Forest Meteorology , 98–99 , 257–277.10.1016/S0168-1923(99)00102-1
  • Mutchler, C. K. , Murphree, C. E. , & McGregor, K. C. (1988). Laboratory and field plots for soil erosion studies. In R. Lal (Ed.), Soil erosion research methods (pp. 9–36). Ankeny, IA: Soil and Water Conservation Society, and Wageningen, Netherlands: Subcommission C: Soil Conservation and Environment, International Soil Science Society.
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part I? A discussion of principles. Journal of Hydrology , 10 , 282–290.10.1016/0022-1694(70)90255-6
  • Neitsch, S. L. , Arnold, J. G. , Kiniry, J. R. , Srinivasan, R. , & Williams, J. R. (2005). Soil and water assessment tool, theoretical documentation: Version 2005 . Temple, TX: USDA Agricultural Research Service and Blackland Research Center.
  • Neitsch, S. L. , Arnold, J. G. , Kiniry, J. R. , & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation . Texas Water Resources Institute Technical Report, No. 406. College Station, TX: Texas A&M University System.
  • Nelson, E. J., & Booth, D. B. (2002). Sediment sources in an urbanizing, mixed land use watershed. Journal of Hydrology , 264 , 51–68.10.1016/S0022-1694(02)00059-8
  • Omani, N. , Tajrishy, M. , & Abrishamchi, A. (2007). Modeling of a river basin using SWAT model and SUFI-2 . 4th International conference of SWAT model, Delft, The Netherlands.
  • Peterson, J. R., & Hamlett, J. M. (1998). Hydrological calibration of SWAT model in a watershed containing fragipan soils. Journal of the American Water Resources Association , 34 , 531–544.10.1111/jawr.1998.34.issue-3
  • Petter, P. (1992). GIS and remote sensing for soil erosion studies in semi-arid environments ( PhD dissertation). University of Lund, Lund, Sweden.
  • Phippen, S., & Wohl, E. (2003). An assessment of land use and other factors affecting sediment loads in the Rio Puerco watershed, New Mexico. Geomorphology , 52 , 269–287.10.1016/S0169-555X(02)00261-1
  • Potter, C., & Haitt, S. (2009). Modeling river flows and sediment dynamics for the Laguna de Santa Rosa watershed in Northern California. Journal of Soil and Water Conservation , 64 , 389–393.
  • Qiu, L. , Zheng, F. , & Yin, R. (2012). SWAT-based runoff and sediment simulation in a small watershed, the loessial hilly-gullied region of China: Capabilities and challenges. International Journal of Sediment Research , 27 , 226–234.10.1016/S1001-6279(12)60030-4
  • Refsgaard, J. C. (1997). Parameterization, calibration, and validation of distributed hydrological models. Journal of Hydrology , 198 , 69–97.10.1016/S0022-1694(96)03329-X
  • Renard, K. G. , Foster, G. R. , Weesies, G. A. , Mccool, D. K. , & Yoder, D. E. (1993). RUSLE Users guide. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation . USDA Agriculture Handbook 703. Washington, DC: U.S. Goverment Printing Office.
  • Renard, K. G., & Freimund, J. R. (1994). Using monthly precipitation data to estimate the R factor in the revised USLE. Journal of Hydrology , 157 , 287–306.10.1016/0022-1694(94)90110-4
  • Runkel, R. L. , Crawford, C. G. , & Cohn, T. A. (2004). Load Estimator (LOADEST): A FORTRAN program for estimating constituent loads in streams and rivers. In Techniques and Methods Book 4 , Chapter A5. Reston, VA: US Geological Survey.
  • Sadek, A. E., & Irvem, A. (2015). Evaluating the impact of land use uncertainty on the simulated streamflow and sediment yield of the Seyhan River basin using the SWAT model. Turkish Journal of Agriculture and Forestry . 38 , 515–530. doi:10.3906/tar-1309-89
  • Santhi, C. , Arnold, J. G. , Williams, J. R. , Dugas, W. A. , Srinivasan, R. , & Hauck, L. M. (2001). Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association , 37 , 1169–1188.10.1111/jawr.2001.37.issue-5
  • Santhi, C. , Kannan, N. , White, M. , Di Luzio, M. , Arnold, J. G. , Wang, X. , & Williams, J. R. (2014). An integrated modeling approach for estimating the water quality benefits of conservation practices at river basin scale. Journal of Environmental Quality , 43 , 177–198. doi:10.2134/jeq2011.0460
  • Schmidt, J. , Werner, M. V. , & Michael, A. (1999). Application of the EROSION 3D model to the CATSOP watershed, The Netherlands. CATENA , 37 , 449–456. doi:10.1016/S0341-8162(99)00032-6
  • Setegn, S. G. , Srinivasan, R. , Assefa, B. D. , & Melesse, M. (2009). Spatial delineation of soil erosion vulnerability in the Lake Tana Basin, Ethiopia. Hydrological Processes , 23 , 3738–3750.
  • Shawul, A. A. , Alamirew, T. , & Dinka, M. O. (2013). Calibration and validation of SWAT model and estimation of water balance components of Shaya mountainous watershed, Southeastern Ethiopia. Hydrology and Earth System Science. Discussion , 10 , 13955–13978.10.5194/hessd-10-13955-2013
  • Srivastava, P. , McNair, J. N. , & Johnson, T. E. (2006). Comparison of process‐based and artificial neural network approaches for streamflow modeling in an agricultural watershed. Journal of the American Water Resources Association , 42 , 545–563.10.1111/jawr.2006.42.issue-3
  • Tolson, B. A., & Shoemaker, C. A. (2007). Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research , 43 , W01413. doi:10.1029/2005WR004723
  • Uzeika, T. , Merten, G. H. , Minella, J. P. G. , & Moro, M. (2012). Use of the SWAT model for hydro-sedimentologic simulating in a small rural watershed. Revista Brasileira de Ciência do Solo , 36 , 557–565.10.1590/S0100-06832012000200025
  • Van Griensven, A., & Bauwens, W. (2005). Application and evaluation of ESWAT on the Dender basin and Wister Lake Basin. Hydrological Processes , 19 , 827–838.10.1002/(ISSN)1099-1085
  • van Griensven, A. , Meixner, T. , Grunwald, S. , Bishop, T. , & Sirinivasan, R. (2006). A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology , 324 , 10–23.10.1016/j.jhydrol.2005.09.008
  • Veith, T. , Brauns, J. , Weisheit, W. , Mittag, M. , & Buchel, C. (2009). Identification of a specific fucoxanthin chlorophyll protein, Fcp4, in the light harvesting complex of photosystem I in the diatom Cyclotella meneghiniana. Biochimica et Biophysica Acta , 1787 , 905–912.10.1016/j.bbabio.2009.04.006
  • Vigiak, O. , Malagó, A. , Bouraoui, F. , Vanmaercke, M. , & Poesen, J. (2015). Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins. Science of the Total Environment , 538 , 855–875.10.1016/j.scitotenv.2015.08.095
  • Weber, A. , Fohrer, N. , & Moller, D. (2001). Long-term land use changes in a mesocale watershed due to socio-economic factors: Effects on landscape structures and functions. Ecological Modeling , 140 , 125–140.10.1016/S0304-3800(01)00261-7
  • White, K. L., & Chaubey, I. (2005). Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. Journal of the American Water Resources Association (JAWRA) , 41 , 1077–1089.10.1111/jawr.2005.41.issue-5
  • White, A. B. , Kumar, P. , & Saco, P. M. (2004). Hydrodynamic and geomorphologic dispersion: Scale effects in the Illinois River Basin. Journal of Hydrology , 288 , 237–257.10.1016/j.jhydrol.2003.10.019
  • Williams, J. R. (1975). Sediment-yield prediction with universal equation using runoff energy factor. In Present and prospective technology for predicting sediment yield and sources: Proceedings of the sediment-yield workshop , November 28–30, 1972. ARS-S-40 (pp. 244–252). Oxford, MS: USDA Sedimentation Laboratory.
  • Williams, J. R. (1995). The EPIC Model. In V. P. Singh (Ed.), Computer Models of Watershed Hydrology . Highland Ranch, CO: Water Resources Publications.
  • Winchell, M. , Srinivasan, R. , Di Luzio, M. , & Arnold, J. (2010). ArcSWAT interface for SWAT 2009: User’s guide . Temple, TX: Blackland Research and Extension Center, Texas AgriLife Research, and USDA-ARS Grassland, Soil, and Water Research Laboratory.
  • Wischmeier, W. H. , & Smith, D. O. (1965). Erosion losses from cropland east of the Rocky Mountains. USDA Agricultural Handbook No. 282 . Washington, DC: U.S. Government Printing Office.
  • Yesuf, H. M. , Assen, M. , Alamirew, T. , & Melesse, A. M. (2015). Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia. CATENA , 127 , 191–205.10.1016/j.catena.2014.12.032
  • Young, R. A. , Onstad, C. A. , Bosch, D. D. , & Anderson, W. P. (1989). Agricultural nonpoint source pollution model: A watershed analysis tool . Morris, MN: USDA Agricultural Research Service.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.