381
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Flood variability in the common era: a synthesis of sedimentary records from Europe and North America

ORCID Icon, & ORCID Icon
Pages 121-135 | Received 13 Nov 2020, Accepted 11 Feb 2021, Published online: 25 Feb 2021

References

  • Benito, G., Macklin, M. G., Panin, A., Rossato, S., Fontana, A., Jones, A. F., Machado, M. J., Matlakhova, E., Mozzi, P., & Zielhofer, C. (2015). Recurring flood distribution patterns related to short-term holocene climatic variability. Scientific Reports, 5(1), 1–8. 10.1038/srep16398.
  • Benito, G., Sopena, A., Sanchez-Moya, Y., Machado, M., & Perez-Gonzales, A. (2003). Palaeoflood record of the tagus river (Central Spain) during the late pleistocene and holocene. Quaternary Science Reviews, 22(15–17), 1737–1746. 10.1016/S0277-3791(03)00133-1.
  • Berghujis, W. R., Woods, R. A., Hutton, C. J., & Sivapalan, M. (2016). Dominant flood generating mechanisms across the United States. Geophysical Research Letters, 43(9), 4382–4390. 10.1002/2016GL068070.
  • Christiansen, B., & Ljungqvist, F. (2012). The extra-tropical Northern Hemisphere temperature in the last two millennia: Reconstruction of low frequency variability. Climate of the Past, 8(2), 765–786. 10.5194/cp-8-765-2012.
  • Christiansen, B., & Ljungqvist, F. (2017). Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Reviews of Geophysics, 55(1), 40–96. 10.1002/2016RG000521.
  • Cohn, T., & Lins, H. (2005). Nature’s style: naturally trendy. Geophysical Research Letters, 32(23), 1–5. 10.1029/2005GL024476.
  • Collins, M. J., Kirk, J. P., Pettit, J., DeGaetano, A. T., McCown, M. S., Peterson, T. C., … Zhang, X. (2014). Annual floods in New England (USA) and Atlantic Canada: Synoptic climatology and generating mechanisms. Physical Geography, 35(3), 195–219. 10.1080/02723646.2014.888510.
  • Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., & Anchukaitis, K. J. (2020). Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future, 8(6), 1–20. 10.1029/2019EF001461.
  • Cook, E. R., Seagar, R., Cane, M. A., & Stahle, D. W. (2007). North American drought: reconstructions, cause, and consequences. Earth-Science Reviews, 81(1–2), 93–134. 10.1016/j.earscirev.2006.12.002.
  • Cook, E. R., Seagar, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank, D., Krusic, P. J., & Zang, C. (2015). Old world megadroughts and pluvials during the common era. Science Advances, 1(10), 1–10. 10.1126/sciadv.1500561.
  • Daniels, J. M., & Knox, J. (2005). Alluvial stratigraphic evidence for channel incision during the mediaeval warm period on the central great plains, USA. Holocene, 15(5), 736–747. 10.1191/0959683605hl847rp.
  • Eiras-Barca, J., Brands, S., & Miguez-Macho, G. (2016). Seasonal variations in North Atlantic atmospheric river activity and associations with anomalous precipitation over the Iberian Atlantic margin. Journal of Geophysical Research: Atmosphere, 121(2), 931–948. 10.1002/2015JD023379.
  • Ely, L., Enzel, Y., Baker, V., & Cayan, D. (1993). A 5000-year record of extreme floods and climate change in the Southwestern United States. Science, 262(5132), 410–412. 10.1126/science.262.5132.410.
  • England, J. F., Jr., Cohn, T. A., Faber, B. A., Stedinger, J. R., Thomas, W. O., Jr., Veilleux, A. G., Kiang, J. E., & Mason, R. R., Jr. (2018). Guidelines for determining flood flow frequency—Bulletin 17C. Geological Survey Techniques and Methods. book 4, chap. B5, 148 p.
  • Enzel, Y., Ely, L., House, P., Baker, V., & Webb, R. (1993). Paleoflood evidence for a natural upper bound to flood magnitudes in the Colorado River Basin. Water Resources Research, 29(7), 2287–2297. 10.1029/93WR00411.
  • Fuller, I., Macklin, M., Toonen, W., & Holt, K. (2018). Storm-generated holocene and historical floods in the Manawatu River, New Zealand. Geomorphology, 310(2018), 102–124. 10.1016/j.geomorph.2018.03.010.
  • Groisman, P., Knight, R. W., Easterling, D. R., Karl, T. R., Hegerl, G. C., & Razuvaev, V. N. (2005). Trends in intense precipitation in the climate record. Journal of Climate, 18(9), 1343–1367. 10.1175/JCLI3339.1.
  • Harden, T., Macklin, M. G., & Baker, V. R. (2010). Holocene flood histories in south-western USA. Earth Surface Processes and Landforms, 35(6), 707–716. 10.1002/esp.1983.
  • Harden, T., O’Connor, J., & Driscoll, D. (2015). Late holocene flood probabilities in the black hills, South Dakota with emphasis on the medieval climate anomaly. Catena, 130(2015), 62–68. 10.1016/j.catena.2014.10.002.
  • Harden, T., O’Connor, J. E., Driscoll, D. G., & Stamm, J. F. (2011). Flood-frequency analyses from paleoflood investigations for spring, rapid, boxelder, and elk creeks, black hills, Western South Dakota. U.S. Geological Survey Scientific Investigations Report 2011-5131.
  • Hirsch, R., & Ryberg, K. (2012). Has the magnitude of floods across the USA changed with global CO2 levels?. Hydrological Sciences Journal, 57(1), 1–9. 10.1080/02626667.2011.621895.
  • Hirschboeck, K. K. (1988). Flood hydroclimatology. In V. R. Baker, R. C. Kochel, & P. C. Patton (Eds.), Flood Geomorphology (pp. 27–49). John Wiley and Sons.
  • Hodgkins, G., Dudley, R., Archfield, S., & Renard, B. (2019). Effects of climate, regulation, and urbanization on historical flood trends in the United States. Journal of Hydrology, 573(2019), 697–709. 10.1016/j.jhydrol.2019.03.102.
  • Hoffmann, T., Lang, A., & Dikau, R. (2008). Holocene river activity: Analysing 14C-dated fluvial and colluvial sediments from Germany. Quaternary Science Reviews, 27(21–22), 2031–2040. 10.1016/j.quascirev.2008.06.014.
  • Hu, J. M., & Nolin, A. W. (2020). Widespread warming trends in storm temperatures and snowpack fate across the Western United States. Environmental Research Letters, 15(3), 34–59. 10.1088/1748-9326/ab763f.
  • Ivancic, T. J., & Shaw, S. B. (2015). Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Climatic Change, 133(4), 681–693. 10.1007/s10584-015-1476-1.
  • Jacobeit, J., Philipp, A., & Nonnenmacher, M. (2006). Atmospheric circulation dynamics linked with prominent discharge events in Central Europe. Hydrological Sciences Journal, 51(5), 946–965. 10.1623/hysj.51.5.946.
  • Jarrett, R. D. (1991). Paleohydrology and its value in analyzing floods and droughts. U.S. Geological Survey Water Supply Paper 2375, 105–116.
  • Jones, A. F., Macklin, M. G., & Brewer, P. A. (2012). A geochemical record of flooding on the upper river severn, UK, during the last 3750years. Geomorphology, 179(2012), 89–105. 10.1016/j.geomorph.2012.08.003.
  • Knox, J. C. (1985). Responses of floods to holocene climatic change in the Upper Mississippi Valley. Quaternary Research, 25(3), 287–300. 10.1016/0033-5894(85)90036-5.
  • Knox, J. C (1993). Large increases in flood magnitude in response to modest changes in climate. Nature, 361(1993), 430–432. 10.1038/361430a0.
  • Kochel, R. C., & Baker, V. R. (1982). Paleoflood hydrology. Science, 215(4531), 353–361. 10.1126/science.215.4531.353.
  • Leigh, D. S. (2017). Vertical accretion sand proxies of gaged floods along the upper little Tennessee River, blue ridge mountains, USA. Sedimentary Geology, 364(2018), 342–350. 10.1016/j.sedgeo.2017.09.007.
  • Lins, H. F., & Cohn, T. A. (2011). Stationarity: Wanted dead or alive?. JAWRA Journal of the American Water Resources Association, 47(3), 475–480. 10.1111/j.1752-1688.2011.00542.x.
  • Liu, T., Greenbaum, N., Baker, V. R., Ji, L., Onken, J., Weisheit, J., Porat, N., & Rittenour, T. (2020). Paleoflood hydrology on the lower green river, upper Colorado river basin, USA: an example of a naturalist approach to flood-risk analysis. Journal of Hydrology, 580(2020), 124337. 10.1016/j.jhydrol.2019.124337.
  • Lombardi, R., Davis, L., Stinchcomb, G. E., Muñoz, S. E., Stewart, L., & Therrell, M. D. (2020). Fluvial activity in major river basins of the eastern United States during the holocene. The Holocene, 30(9), 1279–1295. 10.1177/0959683620919978.
  • Luoto, T. P., & Nevalainen, L. (2018). Temperature-precipitation relationship of the common era in northern Europe. Theoretical and Applied Climatology, 132(3–4), 933–938. 10.1007/s00704-017-2139-0.
  • Macklin, M. G., Benito, G., Gregory, K. J., Johnstone, E., Lewin, J., Soja, R., & Thorndycraft, V. R. (2006). Past hydrological events reflected in the holocene fluvial history of Europe. Catena, 66(1–2), 145–154. 10.1016/j.catena.2005.07.015.
  • Madakumbura, G. D., Kim, H., Utsumi, N., Shiogama, H., Fischer, E. M., Seland, Ø., Scinocca, J. F., Mitchell, D. M., Hirabayashi, Y., & Oki, T. (2019). Event-to-event intensification of the hydrologic cycle from 1.5 °C to a 2 °C warmer world. Scientific Reports, 9(1), 1–7. 10.1038/s41598-019-39936-2.
  • Magilligan, F. J., Goldstein, P. S., Fisher, G. B., Bostick, B. C., & Manners, R. B. (2008). Late quaternary hydroclimatology of a hyper-arid Andean watershed: climate change, floods, and hydrologic responses to the El Niño-Southern Oscillation in the Atacama Desert. Geomorphology, 101(1–2), 14–32. 10.1016/j.geomorph.2008.05.025.
  • Mallakpour, I., & Villarini, G. (2015). The changing nature of flooding across the central United States. Nature Climate Change, 5(3), 250–254. 10.1038/nclimate2516.
  • Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., & Ni, F. (2009). Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science, 326(5957), 1256–1260. 10.1126/science.1177303.
  • Min, S., Zhang, X., Zweirs, F. C., & Hegerl, G. C. (2011). Human contribution to more-intense precipitation extremes. Nature, 470(7334), 378–381. 10.1038/nature09763.
  • Mudelsee, M., Börngen, M., Tetzlaff, G., & Grünewald, U. (2004). Extreme floods in Central Europe over the past 500 years: role of cyclone pathway “zugstrasse vb”. Journal of Geophysical Research: Atmospheres, 109(D23), 1–21. 10.1029/2004JD005034.
  • Muñoz, S. E., Gruley, K. E., Massie, A., Fike, D. A., Schroeder, S., & Williams, J. W. (2015). Cahokia’s emergence and decline coincided with shifts of flood frequency on the mississippi river. Proceedings of the National Academy of Sciences of the United States of America, 112(20), 6319–6324. 10.1073/pnas.1501904112.
  • Muñoz, S. E., Porter, T. J., Bakkelund, A., Nusbaumer, J., Dee, S. G., Hamilton, B., Giosan, L., & Tierney, J. E. (2020). Lipid biomarker record documents hydroclimatic variability of the Mississippi River basin during the common era. Geophysical Research Letters, 47(12), 1–10. 10.1029/2020GL087237.
  • Munoz, S.E., Giosan, L., Therrell, M.D., Remo, J.W.F., Shen, Z., Sullivan, R.M., Wiman, C., O’Donnell, M., Donnelly, J.P. (2018). Climatic control of Mississippi River flood hazard amplified by river engineering. Nature 556, 95–98. 10.1038/nature2614
  • Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K., & Rasmussen, R. (2017). Slower snowmelt in a warmer world. Nature Climate Change, 7(3), 214–219. 10.1038/nclimate3225.
  • Neil, K., & Gajewski, K. (2018). An 11,000‐yr record of diatom assemblage responses to climate and terrestrial vegetation changes, southwestern québec. Ecosphere, 9(11), e02505. 10.1002/ecs2.2505.
  • O’Connor, J. E., Ely, L. L., Wohl, E. E., Stevens, L. E., Melis, T. S., Kale, V. S., & Baker, V. R. (1994). A 4500-year record of large floods on the Colorado river in the Grand Canyon, Arizona. The Journal of Geology, 102(1), 1–9. 10.1086/629644.
  • Oliva, F., Viau, A. E., Bjornson, J., Desrochers, N., & Bonneau, M. A. (2016). A 1300 year reconstruction using oxbow lake sediments in temperate southwestern Quebec, Canada. Canadian Journal of Earth Sciences, 53(4), 378–386. 10.1139/cjes-2015-0191.
  • Oliva, M., Ruiz-Fernández, J., Barriendos, M., Benito, G., Cuadrat, J., Domínguez-Castro, F., García-Ruiz, J., Giralt, S., Gómez-Ortiz, A., & Vicente-Serrano, S. (2018). The little ice age in Iberian mountains. Earth-Science Reviews, 177(2018), 175–208. 10.1016/j.earscirev.2017.11.010
  • PAGES. (2013). Continental-scale temperature variability during the past two millennia. Nature Geoscience, 6(5), 339–982. 10.1038/ngeo1797.
  • Peng, F., Prins, M., Kasse, C., Cohen, K., Van Der Putten, N., Van Der Lubbe, J., Toonen, W., & Van Balen, R. (2019). An improved method for paleoflood reconstruction and flooding phase identification, applied to the Meuse river in the Netherlands. Global Planetary Change, 177(2019), 213–224. 10.1016/j.gloplacha.2019.04.006.
  • Perșoiu, I., & Perșoiu, A. (2019). Flood events in Transylvania during the medieval warm period and the little ice age. The Holocene, 29(1), 85–96. 10.1177/0959683618804632.
  • Rodysill, J. R., Anderson, L., Cronin, T. M., Jones, M. C., Thompson, R. S., Wahl, D. B., & Wingard, G. L. (2018). A North American hydroclimate synthesis (NAHS) of the common era. Global and Planetary Change, 162(2018), 175–198. 10.1016/j.gloplacha.2017.12.025.
  • Schlef, K. E., Moradkhani, H., & Lall, U. (2019). Atmospheric circulation patterns associated with extreme United States floods identified via machine learning. Scientific Reports, 9(1), 1–12. 10.1038/s41598-019-43496-w.
  • Sharma, S., & Mujumdar, P. P. (2019). On the relationship of daily rainfall extremes and local mean temperature. Journal of Hydrology, 572(2019), 179–191. 10.1016/j.jhydrol.2019.02.048.
  • Sharma, S., Shukla, A., Bartarya, S., Marh, B., & Juyal, N. (2017). The holocene floods and their affinity to climatic variability in the western Himalaya, India. Geomorphology, 290(2017), 317–334. 10.1016/j.geomorph.2017.04.030.
  • Sheffer, N., Enzel, Y., Benito, G., Grodek, T., Poart, N., Lang, M., Naulet, R., & Cœur, D. (2003). Paleofloods and historical floods of the Ardèche River, France. Water Resources Research, 39(12), 1–13. 10.1029/2003WR002468.
  • St. George, S., Hefner, A. M., & Avila, J. (2020). Paleofloods stage a comeback. Nature Geoscience, 13(12), 766–768. 10.1038/s41561-020-00664-2.
  • Tebaldi, C., Hayhoe, K., Arblaster, J. M., & Meehl, G. A. (2002). Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79(3–4), 185–211. 10.1007/s10584-006-9051-4.
  • Thorndycraft, V. R., Benito, G., Rico, M., Sopeña, A., Sanchez-Moya, Y., & Casas, A. (2005). A long-term flood discharge record derived from slackwater flood deposits of the llobregat river, NE Spain. Journal of Hydrology, 313(1–2), 16–31. 10.1016/j.jhydrol.2005.02.003.
  • Toomey, M., Cantwell, M., Colman, S., Cronin, T., Donnelly, J., Giosan, L., Heil, C., Korty, R., Marot, M., & Willard, D. (2019). The mighty susquehanna—extreme floods in Eastern North America during the past two millennia. Geophysical Research Letters, 46(6), 3398–3407. 10.1029/2018GL080890.
  • Toonen, W. H. J., Winkels, T. G., Cohen, K. M., Prins, M. A., & Middelkoop, H. (2015). Lower rhine historical flood magnitudes of the last 450 years reproduced from grain-size measurements of flood deposits using end member modelling. Catena, 130(2015), 69–81. 10.1016/j.catena.2014.12.004.
  • Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1), 123–138. 10.3354/cr00953.
  • Trenberth, K. E., Dai, A., Rasmussen, R. A., & Pasrons, D. B. (2003). The changing character of precipitation. Bulletin of American Meteorological Society, 84(9), 1205–1218. 10.1175/BAMS-84-9-1205.
  • Trenberth, K. E., & Shea, D. J. (2005). Relationships between precipitation and surface temperature. Geophysical Research Letters, 32(14), 1–4. 10.1029/2005GL022760.
  • Trouet, V., Diaz, H. F., Wahl, E. R., Viau, A. E., Granham, R., Graham, N., & Cook, E. R. (2013). A 1500-year reconstruction of annual mean temperature for temperature North American on decadal-to-multidecadal time scales. Environmental Research Letters, 8(2), 1–10. 10.1088/1748-9326/8/2/024008.
  • Utsumi, N., Seto, S., Kanae, S., Maeda, E., & Oki, T. (2011). Does higher surface temperature intensify extreme precipitation?. Geophysical Research Letters, 38(16), L16708. 10.1029/2011GL048426.
  • Villarini, G., Serinaldi, F., Smith, J. A., & Krajewski, W. F. (2009). On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resources Research, 45(8), W08417. 10.1029/2008WR007645.
  • Wang, L., & Leigh, D. (2012). Late-holocene paleofloods in the upper little Tennessee River valley, southern blue ridge mountains, USA. Holocene, 22(9), 1061–1066. 10.1177/0959683612437863.
  • Wasko, C., & Nathan, R. (2019). Influence of changes in rainfall and soil moisture on trends in flooding. Journal of Hydrology, 575(2019), 432–441. 10.1016/j.jhydrol.2019.05.054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.