353
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Determination of the relationship among compound Topographic Index (CTI), soil properties and land-use in karst ecosystems

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 307-329 | Received 23 Dec 2020, Accepted 24 Jul 2021, Published online: 04 Aug 2021

References

  • Anonymous, (2020). Dataset: © JAXA/METI ALOS PALSAR L1.0 2007. Accessed through ASF DAAC, Date: 02 May 2020.
  • Armesto, J. J., & Gutierrez, J. R. (1978). El efecto del fuego en Iaestructura de Iavegetacion de Chilecentral. AnalesMuseoHistoria Natural Valparaiso, 11(1), 43-48. http://bibliotecadigital.ciren.cl/bitstream/handle/123456789/20429/00009166.nul?sequence=1
  • Babur, E. (2019). Effects of parent material on soil microbial biomass carbon and basal respiration with in young afforested areas. Scandinavian Journal of Forest Research 43, (2), 94–101. https://doi.org/10.1080/02827581.2018.1561936
  • Baggaley, N., Mayr, T., & Bellamy, P. (2009). Identification of key soil and terrain properties that influence the spatial variability of soil moisture throughout the growing season. Soil Use and Management, 25(3), 262–273. https://doi.org/10.1111/j.1475-2743.2009.00222.x
  • Bangroo, S. A., Najar, G. R., Achin, E., & Truong, P. N. (2020). Application of predictor variables in spatial quantification of soil organic carbon and total nitrogen using regression kriging in the North Kashmir forest Himalayas. Catena, 193(104632), 1-9. https://doi.org/10.1016/j.catena.2020.104632
  • Battaglia, M. L. (2018). Crop residue management effects on crop production, greenhouse gases emissions, and soil quality in the Mid-Atlantic USA. Virginia Tech. Blacksburg, VA. https://vtechworks.lib.vt.edu/handle/10919/86483 ( accessed: Oct/ 19/2020).
  • Baver, L. D. (1956). Soil Physics. John Wiley and Sons Inc.
  • Beaudette, D. E., Dahlgren, R. A., & O’Green, A. T. (2013). Terrain-shape indices for modeling soil moisture dynamics. Soil Science Society of America Journal, 77(5), 1696–1710. https://doi.org/10.2136/sssaj2013.02.0048
  • Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834
  • Blumenthal, M. (1947). Geology of Taurus Mountains at the hinterland of Seydişehir-Beyşehir. MTA Publications, D, 2.
  • Bremmer, J. M., & Mulvaney, C. S. (1982). Nitrogen Total. In Methods of Soil Analysis. Part II, Chemical and Microbiological Methods (2nd ed., pp. 595–624). Agronomy Monograph No. 9, American Society of Agronomy and Soil Science Society of America.
  • Brocca, L., Morbidelli, R., & Melone, F. (2007). Soil moisture spatial variability in experimental areas of central Italy. Journal of Hydrology, 333(2–4), 356–373. https://doi.org/10.1016/j.jhydrol.2006.09.004
  • Brocca, L., Tullo, T., & Melone, F. (2012). Catchment scale soil moisture spatial–temporal variability. Journal of Hydrology, 422(423), 63–75. https://doi.org/10.1016/j.jhydrol.2011.12.039
  • Brubaker, S. C., Jones, A. J., Lewis, D. T., & Frank, K. (1993). Soil properties associated with landscape position. Soil Science Society of America Journal, 57(1), 235–239. https://doi.org/10.2136/sssaj1993.03615995005700010041x
  • Buchanan, B. P., Fleming, M., Schneider, R. L., Richards, B. K., Archibald, J., Qiu, Z., & Walter, M. T. (2014). Evaluating topographic wetness indices across central New York agricultural landscapes. Hydrology and Earth System Sciences, 18(8), 3279–3299. https://doi.org/10.5194/hess-18-3279-2014
  • Burt, T., & Butcher, D. (1985). Topographic controls of soil moisture distributions. Journal of Soil Science, 36(3), 469–486. https://doi.org/10.1111/j.1365-2389.1985.tb00351.x
  • Cepel, N. (1988). Soil Science Text Book. I.U. Publication No: 3416 (pp. No: 389). Faculty of Forestry Publication.
  • Cepel, N. (1995). Forest Ecology Text Book. I.U (pp. 423). Publications. Faculty of ForestryPublication.
  • Chen, Z. S., Hsieh, C. F., Jiang, F. Y., Hsieh, T. H., & Sun, I. F. (1997). Relations of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan. Plant Ecology, 132(2), 229–241. https://doi.org/10.1023/A:1009762704553
  • Collick, A. S., Veith, T. L., Fuka, D. R., Kleinman, P. J. A., Buda, A. R., Weld, J., Bryant, Vadas, P. A., White, M. J., Harmel, R. D., Easton, Z. M., & Bryant, R. B. (2016). Improved simulation of edaphic and manure phosphorus loss in SWAT. Journal of Environmental Quality, 45(4), 1215–1225. https://doi.org/10.2134/jeq2015.03.0135
  • CORINE. (1992). Soil Erosion Risk and Important Land Resources in the Southeastern Regions of the European Community. EUR 13233, Luxembourg, BELGIUM. pp.32–48.
  • Da Silva, A. P., Nadler, A., & Kay, B. D. (2001). Factors contributing to temporal stability in spatial patterns of water content in the tillage zone. Soil and Tillage Research, 58(3–4), 207–218. https://doi.org/10.1016/S0167-1987(00)00169-0
  • Dar, S. A., Singh, S. K., Wan, H. Y., Kumar, V., Cushman, S. A., & Sathyakumar, S. (2021). Projected climate change threatens Himalayan brown bear habitat more than human land use. Animal Conservation. 24(3), 1-17.https://doi.org/10.1111/acv.12671
  • Devkota, S., Shakya, N. M., Sudmeier, K., McAdoo, B. G., & Jaboyedoff, M. (2018). Predicting soil depth to bedrock in an anthropogenic landscape: a case study of phewa watershed in panchase region of central-western hills, nepal. Journal of Nepal Geological Society, 55(1), 173–182. https://doi.org/10.3126/jngs.v55i1.22809
  • Dindaroglu, T. (2021). Determination of ecological networks for vegetation connectivity using GIS & AHP technique in the Mediterranean degraded karst ecosystems. Journal of Arid Environments, 188(104385), 1-11. https://doi.org/10.1016/j.jaridenv.2020.104385
  • Dindaroglu, T., Babur, E., Yakupoglu, T., Rodrigo-Comino, J., & Cerdà, A. (2021). Evaluation of geomorphometric characteristics and soil properties after a wildfire using Sentinel-2 MSI imagery for future fire-safe forest. Fire Safety Journal, 122(103318), 1-19. https://doi.org/10.1016/j.firesaf.2021.103318
  • Dindaroglu, T., & Canbolat, M. Y. (2017). Investigation of change in soil properties due to physiographic characteristics and land use. Turkish Journal of Forest Science, 1(1), 10–24. https://doi.org/10.32328/turkjforsci.294930
  • Dindaroğlu, T., & Vermez, Y. (2019). Classification and mapping of some site features of karst ecosystems (Sarımsak Mountain Andırın-Kahramanmaraş). Turkish Journal of Forest Science, 3(1), 60–83. https://doi.org/10.32328/turkjforsci.468388
  • Droesen, J. M. (2016). Downscaling soil moisture using topography. In The evaluation and optimisation of a downscaling approach. MS Thesis GIRS-2016-17. Wageningen University and Research Centre Laboratory of Geo-Information Science and Remote Sensing Wageningen. Editor: Arend Ligtenberg. 4-6.
  • Easton, Z. M., Fuka, D. R., Walter, M. T., Cowan, D. M., Schneiderman, E. M., & Steenhuis, T. S. (2008). Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas. Journal of Hydrology, 348(3–4), 279–291. https://doi.org/10.1016/j.jhydrol.2007.10.008
  • EC. (2009). European Commission, Eurostat, 2009. LUCAS 2009 Technical reference document C1. Instruction for surveyors. http://ec.europa.eu/eurostat/documents/205002/6786255/LUCAS2015-C1-Instructions-20150227.pdf [accessed on 07 February 2018]
  • Entin, J. K., Robock, A., & Vinnikov, K. Y. (2000). Temporal and spatial scales of observed soil moisture variations in the extratropics. Journal of Geophysical Research: Atmospheres, 105(D9), 11865–11877. https://doi.org/10.1029/2000JD900051
  • ERDAS, 2009. Leica Geosystems, LLC, Atlanta, U.S.A
  • Fisher, R. F., & Binkley, D. (2000). Ecology and management of forest soils (pp. 512). John Wiley and Sons.
  • Florinsky, I. V., Eilers, R. G., & Manning, G. R. (2002). Prediction of soil properties by digital terrain modeling. Environmental Modelling and Software, 17(3), 295–311. https://doi.org/10.1016/S1364-8152(01)00067-6
  • Gee, G. W., & Hortage, K. H. (1986). Particle- Size Analysis. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods (Second ed., pp. 383–441). Agronomy. No: 9. 2. Edition.
  • Grafius, D. R., Malanson, G. P., & Weiss, D. (2012). Secondary controls of alpine treeline elevations in the western USA. Physical Geography, 33(2), 146–164. https://doi.org/10.2747/0272-3646.33.2.146
  • Gulcur, F. (1974). Soil Physical and Chemical Analysis Methods.İ.Ü. Faculty of Forestry (pp. 201). Yay.
  • Higginbottom, T. P., Field, C. D., Rosenburgh, A. E., Wright, A., Symeonakis, E., & Caporn, S. J. (2018). High-resolution wetness index mapping: A useful tool for regional scale wetland management. Ecological Informatics, 48(2018), 89–96. https://doi.org/10.1016/j.ecoinf.2018.08.003
  • Hu, C., Wright, A. L., & Lian, G. (2019a). Estimating the spatial distribution of soil properties using environmental variables at a catchment scale in the loess hilly area, China. International Journal of Environmental Research and Public Health, 16(3), 491. https://doi.org/10.3390/ijerph16030491
  • Hu, C., Wright, A. L., & Lian, G. (2019b). Estimating the spatial distribution of soil properties using environmental variables at a catchment scale in the loess hilly area, China. International Journal of Environmental Research and Public Health, 16(3), 491. https://doi.org/10.3390/ijerph16030491
  • IPCC. (2000). Land Use, Land Use Change and Forestry. In IPCC, Special Report. Cambridge University Press. 1-388
  • Irmak, A. (1966).Forest Ecology. Publisher:I.U. Faculty of Forestry Publication No (pp. 1187/104).
  • Jensen, J. R. (2005). Digital image processing: A remote sensing perspective. In Upper Saddle River, NJ: SPrentice Hall. Part of the Pearson Series Geographic Information Science, 505-512.
  • Johnson, C. E., Méndez, J. J. R., & Lawrence, G. B. (2000). Forest soil chemistry and terrain attributes in a catskills watershed. Soil Science Society of America Journal, 64(5), 1808–1814. https://doi.org/10.2136/sssaj2000.6451804x
  • Johnston, K., Ver Hoef, J. M., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS geostatistical analyst (Vol. 380). Esri.
  • Jones, S. L., Slattery, M. C., & Ritter, E. C. (2020). Near-surface soil moisture dynamics in a prairie hillslope seep/headwater stream system in Texas, USA. Physical Geography, Latest online article,1–21. https://doi.org/10.1080/02723646.2020.1838120
  • Klute, A., & Dirksen, C. (1986). Hydrolic conductivity and diffusivity: Laboratory methods. Metod of soil analysis.Part 1. Physical and minerological methods 2. Agronomy. No: 9. 2, Edition 687–734.
  • Kozhuhovsky, A., Komatsu, G., & Yamskikh, G. (2015). The evolution of gullies in steppe and forest-steppe landscapes of the Minusinskaya intermountain depression, Siberia: A case study in the central part of the Krasnoyarsk water reservoir. Physical Geography, 36(4), 305–321. https://doi.org/10.1080/02723646.2015.1041199
  • Kozlu, H. (1987). Stratigraphy and Structural Evolution of Misis-Andirin (Vol. 7, pp. 104–116). Ankara.
  • Kumar, P., Lai, L., Battaglia, M. L., Kumar, S., Owens, V., Fike, J., Galbraith, J., Hong, C. O., Faris, R., Crawford, R., Crawford, J., Hansen, J., Mayton, H., & Viands, D. (2019). Impacts of nitrogen fertilization rate and landscape position on select soil properties in switch grass field at four sites in the USA. CATENA, 180(1), 183–193. https://doi.org/10.1016/j.catena.2019.04.028
  • Kumar, S., Lai, L., Kumar, P., Feliciano, Y. M. V., Battaglia, M. L., Hong, C. O., Owens, V. N., Fike, J., Farris, R., & Galbraith, J. (2019). Impacts of nitrogen rate and landscape position on soils and switchgrass root growth parameters. Agronomy Journal, 111(3), 1046–1059. https://doi.org/10.2134/agronj2018.08.0483
  • Lafon, C. W., Hanson, A. A., & Dwight, R. A. (2019). Geographic variations in fine-scale vegetation patterns: Aspect preferences of montane pine stands over Southern Appalachian landscapes. Physical Geography, 40(5), 433–460. https://doi.org/10.1080/02723646.2019.1576013
  • Leonelli, G., Masseroli, A., & Pelfini, M. (2016). The influence of topographic variables on treeline trees under different environmental conditions. Physical Geography, 37(1), 56–72. https://doi.org/10.1080/02723646.2016.1153377
  • Li, X., McCarty, G. W., Lang, M., Ducey, T., Hunt, P., & Miller, J. (2018). Topographic and physicochemical controls on soil denitrification in prior converted croplands located on the Delmarva Peninsula, USA. Geoderma, 309(2018), 41–49. https://doi.org/10.1016/j.geoderma.2017.09.003
  • Liao, C., Li, H., Lv, G., Tian, J., Liu, B., Tian, M., & Xu, Y. (2021). Can ecological restoration improve soil properties and plant growth in valley-slope sand dunes on southern Tibetan Plateau? Physical Geography, 42(2), 143–159. https://doi.org/10.1080/02723646.2020.1735859
  • Lillesand, T. M., & Kiefer, R. W. (2000). Remote Sensing and Image Interpretation (Fourth ed.). The Lehigh Press.
  • Liu, C. Q. (2009). Biogeochemical Processes and Cycling of Nutrients in the Earth’s Surface: Cycling of Nutrients in Soil–plant Systems of Karstic Environments, South-west China. Science Press.
  • Liu, S., An, N., Yang, J., Dong, S., Wang, C., & Yin, Y. (2015). Prediction of soil organic matter variability associated with different land use types in mountainous landscape in southwestern Yunnan province, China. Catena, 133 (2015), 137–144. https://doi.org/10.1016/j.catena.2015.05.010
  • Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3 (3rd ed., pp. 437–474). SSSA, ASA.
  • Loew, A., & Schlenz, F. (2011). A dynamic approach for evaluating coarse scale satellite soil moisture products. Hydrology and Earth System Sciences, 15(1), 75–90. https://doi.org/10.5194/hess-15-75-2011
  • Mallick, J., Ahmed, M., Alqadhi, S. D., Falqi, I. I., Parayangat, M., Singh, C. K., & Ijyas, T. (2020). Spatial stochastic model for predicting soil organic matter using remote sensing data. Geocarto International, 1–32. https://doi.org/10.1080/10106049.2020.1720314
  • McKenzie, N. J., & Ryan, P. J. (1999). Spatial prediction of soil properties using environmental correlation. Geoderma, 89(1–2), 67–94. https://doi.org/10.1016/S0016-7061(98)00137-2
  • Meles, M. B., Younger, S. E., Jackson, C. R., Du, E., & Drover, D. (2020). Wetness index based on landscape position and topography (WILT): Modifying TWI to reflect landscape position. Journal of environmental management, 255(109863), 1–9. https://doi.org/10.1016/j.jenvman.2019.109863
  • Meles, M. B., Younger, S. E., Jackson, C. R., Du, E., & Drover, D. (2020). Wetness index based on landscape position and topography (WILT): Modifying TWI to reflect landscape position. Journal of environmental management, 255, 109863.
  • MGM. (1995). General Directorate of Meteorology Weather archive of Kahramanaraş Province. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=KAHRAMANMARAS AccessedDate: 01.Jun.2020
  • Mirchooli, F., Kiani-Harchegani, M., Darvishan, A. K., Falahatkar, S., & Sadeghi, S. H. (2020). Spatial distribution dependency of soil organic carbon content to important environmental variables. Ecological Indicators, 116(106473), 1-12. https://doi.org/10.1016/j.ecolind.2020.106473
  • Mitasova, H., & Hofierka, J. (1993). Interpolation by regularized spline with tension. II: Application to terrain modeling and surface geometry analysis. Mathematical Geology, 25(6), 657–669. https://doi.org/10.1007/BF00893172
  • Mitasova, H., & Mitas, L. (1993). Interpolation by regularized spline with tension: i. theory and implementation. Mathematical Geology, 25(6), 641–655. https://doi.org/10.1007/BF00893171
  • Moeslund, J. E., Arge, L., Bøcher, P. K., Dalgaard, T., Odgaard, M. V., Nygaard, B., & Svenning, J. C. (2013). Topographically controlled soil moisture is the primary driver of local vegetation patterns across a lowland region. Ecosphere, 4(7), 1–26. https://doi.org/10.1890/ES13-00134.1
  • Moore, I. D., Burch, G. J., & Mackenzie, D. H. (1988). Topographic effects on the distribution of surface soil water and the location of ephemeral gullies. Transactions of the ASAE,31(4), 1098–1107.
  • Moore, I. D., Gessler, P. E., & Nielsen, G. A. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of American Journal, 57(2), 443–452. https://doi.org/10.2136/sssaj1993.03615995005700020026x
  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30. https://doi.org/10.1002/hyp.3360050103
  • Nazik, L. (2004). The Karst Regions of Turkey (According to the Morpho genesis and Morphometric Properties). Proceeding of Int. Symposium on Earth SystemSciences 2004, Istanbul-Turkey, 77-82.
  • Negasi, S., Shiferaw, H., Gebremedhin, A., Taye, G., & Zenebe, A. (2019). Comparative study on spatial variability of topsoil moisture content and carbon stocks as influenced by land use and soil and water conservation structures in the semi-arid Ethiopian highlands. http://ugspace.ug.edu.gh/handle/123456789/34093
  • Nelson, D. W., & Sommers, L. E. (1982). Organic Matter. In Methods of Soil Analysis Part2.Chemical and Microbiological Properties (Second ed., pp. 574–579). Agronamy. No: 9 Part 2. Edition.
  • Özyuvacı, N. (1971). Topraklarda Erozyon Eğiliminin Tespitinde Kullanılan Bazı Önemli İndeksler. Istanbul Üniversitesi Orman Fakültesi Dergisi Istanbul, 21(1), 190–207.
  • Nyberg, L. (1996). Spatial variability of soil water content in the covered catchment of Gardsjon, Sweden. Hydrological Processes, 10(1), 89–103. https://doi.org/10.1002/(SICI)1099-1085(199601)10:1<89::AID-HYP303>3.0.CO;2-W
  • Pei, T., Qin, C. Z., Zhu, A. X., Yang, L., Luo, M., Li, B., & Zhou, C. (2010). Mapping soil organic matter using the topographic wetness index: A comparative study based on different flow-direction algorithms and kriging methods. Ecological Indicators, 10(3), 610–619. https://doi.org/10.1016/j.ecolind.2009.10.005
  • Peppa, M. V., Mills, J. P., Moore, P., Miller, P. E., & Chambers, J. E. (2019). Automated co‐registration and calibration in SfM photogrammetry for landslide change detection. Earth Surface Processes and Landforms, 44(1), 287–303. https://doi.org/10.1002/esp.4502
  • Quesada-Román, A., & Mata-Cambronero, E. (2021). The geomorphic landscape of the Barva volcano, Costa Rica. Physical Geography, 42(3), 265-282. URL: https://doi.org/10.1080/02723646.2020.1759762
  • Raduła, M. W., Szymura, T. H., & Szymura, M. (2018). Topographic wetness index explains soil moisture better than bioindication with Ellenberg’s indicator values. Ecological Indicators, 85(1), 172–179. https://doi.org/10.1016/j.ecolind.2017.10.011
  • Raduła, M. W., Szymura, T. H., & Szymura, M. (2018). Topographic wetness index explains soil moisture better than bioindication with Ellenberg’s indicator values. Ecological Indicators, 85(2018), 172–179. https://doi.org/10.1016/j.ecolind.2017.10.011
  • Rawls, W. J., & Pachepsky, Y. A. (2002). Using field topographic descriptors to estimate soil water retention. Soil Science, 167(7), 423–435. https://doi.org/10.1097/00010694-200207000-00001
  • Rhoades, J. D. (1986). Cation Exchange Capasity. In Methods of Soil Analysis (pp. II).(pp. 149-157 Agronomy 9.1179-1237) Am. Soc. of Agron. Inc. Madison, Wiscosin USA.
  • Schmidt, F., & Persson, A. (2003). Comparison of DEM Data Capture and Topographic Wetness Indices, Precision Agr. 4(2), 179–192. https://link.springer.com/article/10.1023/A:1024509322709
  • Seibert, J., Stendahl, J., & Sorensen, R. (2007). Topographical influences on soil properties in boreal forests. Geoderma, 141(1–2), 139–148. https://doi.org/10.1016/j.geoderma.2007.05.013
  • SPSS. (2008). SPSS Statistics for Windows, Version 17.0.
  • Stage, A. R., & Salas, C. (2007). Interactions of elevation, aspect, and slope in models of forest species composition and productivity. Forest Science, 53(4), 486–492. https://doi.org/10.1093/forestscience/53.4.486
  • Steiniger, S., & Bocher, E. (2009). An overview on current free and open source desktop Gis developments. International Journal of Geographical Information Science23, 23(10), 1345–1370. https://doi.org/10.1080/13658810802634956
  • Stolbovoy, V., Montanarella, L., Filippi, N., Jones, A., Gallego, J., & Grassi, G. (2007). Field soil sampling to detect the changes of organic carbon stock in mineral soil 2. EUR 23037 EN (pp. 49). Office for Official Publications of the European Communities. ISBN: 978-92-79-07691-6.
  • Sulebak, J. R., Tallaksen, L. M., & Erichsen, B. (2000). Estimation of areal soil moisture by use of terrain data. Geografiska Annaler: Series A. Physical Geography, 82(1), 89–105. https://doi.org/10.1111/j.0435-3676.2000.00009.x
  • Tague, C., Band, L., Kenworthy, S., & Tenebaum, D. (2010). Plot‐and watershed‐scale soil moisture variability in a humid Piedmont watershed. Water Resources Research, 46(12), 12. https://doi.org/10.1029/2009WR008078
  • Teuling, A. J., & Troch, P. A. (2005). Improved understanding of soil moisture variability dynamics. Geophysical Research Letters, 32(5), 5. https://doi.org/10.1029/2004GL021935
  • Tromp-van Meerveld, H. J., & McDonnell, J. J. (2006). On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale. Advances in Water Resources, 29(2), 293–310. https://doi.org/10.1016/j.advwatres.2005.02.016
  • UNECE. (2003). ICP Forests Manual Book on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, 2003. Part IIIa Sampling and Analysis of Soil and Part IIIb Soil Solution Collection and Analysis. United Nations Commission for Europe Convention on Long-Range Transboundary Air Pollution, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests. http://icp-forests.net/page/icp-forests-manual [ acceded on 12 March 2020]
  • Vermez, Y., Dindaroğlu, T., & Rızaoğlu, T. (2018). Karstik Orman ekosistemlerin bazi petrografik, toprak ve vejetasyon özellikleri; kahramanmaraş-andirin sarimsak daği örneği. KSÜ Doga Bilimleri Dergisi, 21(1), 32–43. https://doi.org/10.18016/ksudobil.291164
  • Wang, G., Li, J., Sun, W., Xue, B., Yinglan, A., & Liu, T. (2019). Non-point source pollution risks in a drinking water protection zone based on remote sensing data embedded within a nutrient budget model. Water Research, 157(2019), 238–246. https://doi.org/10.1016/j.watres.2019.03.070
  • Welsch, D. L., Kroll, C. N., McDonnell, J. J., & Burns, D. A. (2001). Topographic controls on the chemistry of subsurface stormflow. Hydrological Processes, 15(10), 1925–1938. https://doi.org/10.1002/hyp.247
  • Whelan, M. J., & Gandolfi, C. (2002). Modelling of spatial controls on denitrification at the landscape scale. Hydrological Processes, 16(7), 1437–1450. https://doi.org/10.1002/hyp.354
  • Wilson, D. J., Western, A. W., & Grayson, R. B. (2004). Identifying and quantifying sources of variability in temporal and spatial soil moisture observations. Water Resources Research, 40(2), W02507. https://doi.org/10.1029/2003WR002306
  • Xiong, L., Wang, G., Bao, Y., Zhou, X., Sun, X., & Zhao, R. (2018). Detectability of repeated airborne laser scanning for mountain landslide monitoring. Geosciences, 8(12), 469. https://doi.org/10.3390/geosciences8120469
  • Xu, X. L., Ma, K. M., Fu, B. J., Song, C. J., & Liu, W. (2008). Relationships between vegetation and soil and topography in a dry warm river valley, SW China. Catena, 75(2), 138–145. https://doi.org/10.1016/j.catena.2008.04.016
  • Yilmaz, Y., & Gurer, Ö. F. (1996). Andırın, geology and evolution of Misis-Andırın belt around Kahramanmaraş. Turkish Journal of Earth Sciences, 5(3) 39–55. https://journals.tubitak.gov.tr/earth/abstract.htm?id=424
  • Ying, L. X., Shen, Z. H., Piao, S. L., Liu, Y., & Malanson, G. P. (2014). Terrestrial surface-area increment: The effects of topography, DEM resolution, and algorithm. Physical Geography, 35(4), 297–312. https://doi.org/10.1080/02723646.2014.886923
  • Zak, D. R., Hairston, A., & Grigal, D. F. (1991). Topographic influences on nitrogen cycling within an upland pin oak ecosystem. Forest Science, 37(1), 45–53. https://doi.org/10.1093/forestscience/37.1.45
  • Zeverbergen, L. W., & Thorne, C. R. (1987). Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12(1), 47–56. https://doi.org/10.1002/esp.3290120107
  • Zhu, H., Huang, W., & Liu, H. (2018). Loess terrain segmentation from digital elevation models based on the region growth method. Physical Geography, 39(1), 51–66. https://doi.org/10.1080/02723646.2017.1342215
  • Zinko, U., Seibert, J., & Dynesius, M. (2005). Plant species numbers predicted by a topography based groundwater-flow index. Ecosystems, 8(4), 430–441. https://doi.org/10.1007/s10021-003-0125-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.