160
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of micro-weathering index and weathering grade of diverse geomorphic features of proterozoic terrain applying Schmidt hammer

ORCID Icon, ORCID Icon & ORCID Icon
Pages 362-379 | Received 23 Sep 2021, Accepted 23 May 2022, Published online: 31 May 2022

References

  • Acharyya, A., Ray, A., Chaudhuri, B. K., Basu, S. K., Bhaduri, S. K., & Sanyal, A. K. (2006). Proterozoic rock suites along south purulia shear zone, Eastern India: Evidence for rift-related setting. Geological Survey of India, 68(6), 1069–1086. http://www.geosocindia.org/index.php/jgsi/article/view/81715.
  • André, M. (2002). Rates of postglacial rock weathering on glacially scoured outcrops (abisko–riksgränsen area, 68°n). GeografiskaAnnaler: Series A, Physical Geography, 84(3–4), 139–150. https://doi.org/10.1111/j.0435-3676.2002.00168.x
  • Atkinson, D. (2004). Weathering, slopes and landforms. Hodder & Stoughton.
  • Aydin, A., & Basu, A. (2005). The schmidt hammer in rock material characterization. Engineering Geology, 81(1), 1–14. https://doi.org/10.1016/j.enggeo.2005.06.006
  • Aydin, A. (2009). ISRM suggested method for determination of the schmidt hammer rebound hardness: Revised version. International Journal of Rock Mechanics and Mining Sciences, 46(3), 627–634. https://doi.org/10.1016/j.ijrmms.2008.01.020
  • Beylich, A. A., Kolstrup, E., Thyrsted, T., & Gintz, D. (2004). Water chemistry and its diversity in relation to local factors in the latnjavagge drainage basin, arctic–oceanic Swedish Lapland. Geomorphology, 58(1–4), 125–143. https://doi.org/10.1016/S0169-555X(03)00228-9
  • Birkeland, P., & Noller, J. (2000). Rock and mineral weathering. In Noller, Jay Stratton, Sowers, Janet M., Lettis, William R. eds. Quaternary geochronology: Methods and applications. American Geophysical Union. pp. 293–312. https://doi.org/10.1029/RF004p0293.
  • Bishop, P. (2007). Long-term landscape evolution: Linking tectonics and surface processes. Earth Surface Processes and Landforms, 32(3), 329–365. https://doi.org/10.1002/esp.1493
  • Černá, B., & Engel, Z. (2011). Surface and sub-surface schmidt hammer rebound value variation for a granite outcrop. Earth Surface Processes and Landforms, 36(2), 170–179. https://doi.org/10.1002/esp.2029
  • Chorley, R. J., & Morley, L. S. D. (1959). A simplified approximation for the hypsometric integral. The Journal of Geology, 67(5), 566–571. https://doi.org/10.1086/626608
  • Darmody, R. G., Thorn, C. E., Harder, R. L., Schlyter, J. P. L., & Dixon, J. C. (2000). Weathering implications of water chemistry in an arctic–alpine environment, northern Sweden. Geomorphology, 34(1–2), 89–100. https://doi.org/10.1016/S0169-555X(00)00002-7
  • Day, M. J., & Goudie, A. S. (1977). Field assessment of rock hardness using the Schmidt test hammer. BGRG Technical Bulletin, 18, 19–29.
  • Day, M. J. (1980). Rock hardness: Field assessment and geomorphic importance. The Professional Geographer, 32(1), 72–81. https://doi.org/10.1111/j.0033-0124.1980.00072.x
  • Debailleux, L. (2019). Schmidt hammer rebound hardness tests for the characterization of ancient fired clay bricks. International Journal of Architectural Heritage, 13(2), 288–297. https://doi.org/10.1080/15583058.2018.1436204
  • Douglas, G. R., Whalley, W. B., & McGreevy, J. P. (1991). Rock properties as controls on free-face debris fall activity. Permafrost and Periglacial Processes, 2(4), 311–319. https://doi.org/10.1002/ppp.3430020406
  • Eppes, M.-C., & Keanini, R. (2017). Mechanical weathering and rock erosion by climate-dependent subcritical cracking: Weathering by subcritical cracking. Reviews of Geophysics, 55(2), 470–508. https://doi.org/10.1002/2017RG000557
  • Ghosh, D., Mandal, M., Banerjee, M., & Karmakar, M. (2020). Impact of hydro-geological environment on availability of groundwater using analytical hierarchy process (AHP) and geospatial techniques: A study from the upper Kangsabati river basin. Groundwater for Sustainable Development, 11, 100419. https://doi.org/10.1016/j.gsd.2020.100419
  • Ghosh, D., Karmakar, M., Banerjee, M., & Mandal, M. (2021). Evaluating the rate of change and predicting the future scenario of spatial pattern using markov chain model: A study from baghmundi C.D. Block of Purulia district, West Bengal. Applied Geomatics, 13(2), 249–260. https://doi.org/10.1007/s12518-020-00345-0
  • Goudie, A. (Ed.). (2006). Encyclopedia of geomorphology. International Association of Geomorphologists.
  • Goudie, A. S. (2013). The schmidt hammer and related devices in geomorphological research. Treatise on geomorphology, 14, 338–345. https://doi.org/10.1016/B978-0-12-374739-6.00398-5
  • Granger, D. E., & Riebe, C. S. (2007). Cosmogenic nuclides in weathering and erosion. In Holland, Heinrich D., Turekian, Karl K. eds. Treatise on Geochemistry (pp. 401–436). Elsevier.https://doi.org/10.1016/B978-0-08-095975-7.00514-3
  • India Meteorological Department. (2018). Purchased climatic data.
  • Karaman, K., & Kesimal, A. (2015a). A comparative study of Schmidt hammer test methods for estimating the uniaxial compressive strength of rocks. Bulletin of Engineering Geology and the Environment, 74(2), 507–520. https://doi.org/10.1007/s10064-014-0617-5
  • Karaman, K., & Kesimal, A. (2015b). A comparative study of schmidt hammer test methods for estimating the uniaxial compressive strength of rocks. Bulletin of Engineering Geology and the Environment, 74(2), 507–520. https://doi.org/10.1007/s10064-014-0617-5
  • Knuepfer, P. L. K. (1994). Use of rock weathering rinds in dating geomorphic surfaces. In Charlotte, Beck. eds. Dating in exposed and surface contexts (pp. 15–28). University of New Mexico Press.
  • Luo, M., Xu, Y., Mu, K., Wang, R., & Pu, Y. (2018). Spatial variation of the hypsometric integral and the implications for local base levels in the Yanhe River, China. Arabian Journal of Geosciences, 11(14), 366. https://doi.org/10.1007/s12517-018-3711-3
  • Mahadevan, T. M. (2002). Geology of Bihar & Jharkhand (1st ed.). Geological Society of India.
  • Matsukura, Y. (1994). A review of the studies on rock control in weathering processes. Transactions of the Japanese Geomorphological Union, 15, 202–222. https://www.scinapse.io/papers/2415753189.
  • Matsuoka, N. (2001). Direct observation of frost wedging in alpine bedrock. Earth Surface Processes and Landforms, 26(6), 601–614. https://doi.org/10.1002/esp.208
  • Matsuoka, N., Thomachot, C. E., Oguchi, C. T., Hatta, T., Abe, M., & Matsuzaki, H. (2006). Quaternary bedrock erosion and landscape evolution in the SørRondane Mountains, East Antarctica: Reevaluating rates and processes. Geomorphology, 81(3–4), 408–420. https://doi.org/10.1016/j.geomorph.2006.05.005.
  • Matthews, J. A., & Owen, G. (2010). Schmidt hammer exposure-age dating: Developing linear age-calibration curves using holocene bedrock surfaces from the jotunheimen–jostedalsbreen regions of southern Norway. Boreas, 39(1), 105–115. https://doi.org/10.1111/j.1502-3885.2009.00107.x.
  • Matthews, J. A., & Mcewen, L. J. (2013). High‐precision schmidt‐hammer exposure‐age dating of flood berms, vetlestølsdalen, alpine southern Norway: First application and some methodological issues. GeografiskaAnnaler: Series A, Physical Geography, 95(2), 185–195. https://doi.org/10.1111/geoa.12009
  • Matthews, J. A., McEwen, L. J., & Owen, G. (2015). Schmidt-hammer exposure-age dating (SHD) of snow-avalanche impact ramparts in southern Norway: Approaches, results and implications for landform age, dynamics and development: SCHMIDT-HAMMER EXPOSURE-AGE DATING OF SNOW-AVALANCHE IMPACT RAMPARTS. Earth Surface Processes and Landforms, 40(13), 1705–1718. https://doi.org/10.1002/esp.3746
  • Matthews, J. A., Owen, G., Winkler, S., Vater, A. E., Wilson, P., Mourne, R. W., & Hill, J. L. (2016). A rock-surface microweathering index from Schmidt hammer R-values and its preliminary application to some common rock types in southern Norway. CATENA, 143, 35–44. https://doi.org/10.1016/j.catena.2016.03.018
  • McCarroll, D. (1989). Potential and limitations of the schmidt hammer for relative-age dating: Field tests on neoglacial moraines, jotunheimen, Southern Norway. Arctic and Alpine Research, 21(3), 268. https://doi.org/10.2307/1551565
  • McCarroll, D. (1991). The schmidt hammer, weathering and rock surface roughness. Earth Surface Processes and Landforms, 16(5), 477–480. https://doi.org/10.1002/esp.3290160510
  • Migoń, P. (2006). Granite landscapes of the world. Oxford University Press.
  • Modenesi M Christine. (1983). Weathering and morphogenesis in a tropical plateau. CATENA, 10(3), 237–251. https://doi.org/10.1016/0341-8162(83)90034-6
  • Mol, L. (2014). Measuring rock hardness in the field. In Cook, S.J., Clarke, L.E., Nield, J.M. eds. Geomorphological techniques. British Society for Geomorphology, 1–8.
  • Moses, C. A., Robinson, D. A., Williams, R. B. G., & Marques, F. M. S. F. (2006). Predicting rates of 772 shore platform downwearing from rock geotechnical properties and laboratory simulation of 773 weathering and erosion processes. Zeitschrift Fur Geomorphologie, 144, 19–37.
  • Nicholson, D. T. (2008). Rock control on microweathering of bedrock surfaces in a periglacial environment. Geomorphology, 101(4), 655–665. https://doi.org/10.1016/j.geomorph.2008.03.009
  • Nicholson, D. T. (2009). Holocene microweathering rates and processes on ice-eroded bedrock, Røldal area, Hardangervidda, southern Norway. Geological Society, London, Special Publications, 320(1), 29–49. https://doi.org/10.1144/SP320.3
  • Nordberg, V. G., & Turkington, A. V. (2004). Weathering geomorphology: Theoretical and methodological themes. Physical Geography, 25(5), 418–437. https://doi.org/10.2747/0272-3646.25.5.418
  • Oguchi, C. T., Hatta, T., & Matsukura, Y. (1999). Weathering rates over 40,000 years based on changes in rock properties of porous rhyolite. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(10), 861–870. https://doi.org/10.1016/S1464-1895(99)00128-3
  • Oguchi, C. T. (2013). 4.6 weathering rinds: Formation processes and weathering rates. In Shroder, John F. eds. Treatise on geomorphology (pp. 98–110). Elsevier. https://doi.org/10.1016/B978-0-12-374739-6.00067-1
  • Owen, G., Matthews, J. A., & Shakesby, R. A. (2006). Rapid holocene chemical weathering on a calcitic lake shoreline in an alpine periglacial environment: Attgløyma, sognefjell, southern Norway. Permafrost and Periglacial Processes, 17(1), 3–12. https://doi.org/10.1002/ppp.547
  • Pike, R. J., & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geological Society of America Bulletin, 82(4), 1079. h ttps://d oi.org/1 0.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2
  • Poole, R. W., & Farmer, I. W. (1980). Consistency and repeatability of schmidt hammer rebound data during field testing. International Journal of Rock Mechanics and Mining Sciences & Geomechanics abstracts, 17(3), 167–171. https://doi.org/10.1016/0148-9062(80)91363-7
  • Price, D. G. (1995). Weathering and weathering processes. Quarterly Journal of Engineering Geology and Hydrogeology, 28(3), 243–252. https://doi.org/10.1144/GSL.QJEGH.1995.028.P3.03
  • Rabii, F., Achour, H., Rebai, N., & Jallouli, C. (2017). Hypsometric integral for the identification of neotectonic and lithology differences in low tectonically active area (Utica-Mateur region, north-eastern Tunisia). Geocarto International, 32(11), 1229–1242. https://doi.org/10.1080/10106049.2016.1195890
  • Sanyal, S., & Sengupta, P. (2012). Metamorphic evolution of the chotanagpur granite gneiss complex of the East Indian shield: Current status. Geological Society, London, Special Publications, 365(1), 117–145. https://doi.org/10.1144/SP365.7
  • Saptono, S., Kramadibrata, S., & Sulistianto, B. (2013). Using the schmidt hammer on rock mass characteristic in sedimentary rock at tutupan coal mine. Procedia Earth and Planetary Science, 6, 390–395. https://doi.org/10.1016/j.proeps.2013.01.051
  • Sarkar, P., Bandyopadhyay, K. C., Singh, B., Lahiri, S., Sarkar, S., & Ghosh, M. (1998). Final report on the study of chhotanagpur gneissic complex along selected sectors in parts of purulia, Bankura District of West Bengal and Bokaro District of Bihar. Geological Survey of India.
  • Selby, M. J. (1980). A rock mass strength classification for geomorphic purposes: With tests from Antarctica and New Zealand. Zeitschrift Für Geomorphologie, 24(1), 31–51. https://doi.org/10.1127/zfg/24/1984/31
  • Sharma, R. S. (2009). Cratons of the indian shield. in cratons and fold belts of India (Vol. 127, pp. 41–115). Springer. https://doi.org/10.1007/978-3-642-01459-8_2
  • Smith, B. J., Magee, R. W., & Whalley, W. B. (1994). Breakdown patterns of quartz sandstone in a polluted urban environment. In Robinson, D. A., Williams, R. B. G. eds. Rock weathering and landform evolution. Wiley. 131–150.
  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. GSA Bulletin, 63(11), 1117–1142.
  • Summerfield, M. A. (1991). Global geomorphology: An introduction to the study of landforms (Nachdr.). Pearson, Prentice Hall.
  • Viles, H., Goudie, A., Grab, S., & Lalley, J. (2011). The use of the schmidt hammer and equotip for rock hardness assessment in geomorphology and heritage science: A comparative analysis. Earth Surface Processes and Landforms, 36(3), 320–333. https://doi.org/10.1002/esp.2040
  • Yılmaz, N. G. (2013). The influence of testing procedures on uniaxial compressive strength prediction of carbonate rocks from Equotip Hardness Tester (EHT) and proposal of a new testing methodology: Hybrid Dynamic Hardness (HDH). Rock Mechanics and Rock Engineering, 46(1), 95–106. https://doi.org/10.1007/s00603-012-0261-y
  • Zhao, J., Broms, B. B., Zhou, Y., & Choa, V. (1994). A study of the weathering of the bukittimah granite part a: Review, field observations and geophysical survey. Bulletin of the International Association of Engineering Geology - Bulletin de l’AssociationInternationale de Géologie de l’Ingénieur, 49(1), 97–106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.