225
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of Changes in Planform Morphology of the Upper Yamuna River Segment, India, Using Remote Sensing and GIS

, &
Pages 446-477 | Received 16 Feb 2022, Accepted 13 Jun 2022, Published online: 24 Jun 2022

References

  • Ahmad, N., Ahasan, N., & Said, S. (2018). Assessment of changes in morphological characteristics of River Yamuna (Wazirabad-Okhla) in Delhi using remote sensing data. i-Manager’s Journal on Future Engineering and Technology, 14(2), 55–65. https://doi.org/10.26634/jfet.14.2.14852
  • Akhter, S., Eibek, K. U., Islam, S., Reza, M. A., Islam, T., Chu, R., & Shuanghe, S. (2019). Predicting spatiotemporal changes of channel morphology in the reach of Teesta River, Bangladesh using GIS and ARIMA modelling. Quaternary International, 513, 80–94. https://doi.org/10.1016/j.quaint.2019.01.022
  • Ali, P. Y., Jie, D., Khan, A., Sravanthi, N., Rao, L. A. K., and Hao, C. (2019). Channel migration characteristics of the Yamuna River from 1954 to 2015 in the vicinity of Agra, India: A case study using remote sensing and GIS. International Journal of River Basin Management, 17(3), 367–375 https://doi.org/10.1080/15715124.2019.1566238.
  • Ashrafi, Z. M., Shuvo, S. D., & Mahmud, M. S. (2016). Changes in course pattern of the Teesta River after the effect of an engineering project.
  • Ayman, A. A., & Ahmad, F. (2009). Meandering and bank erosion of the river Nile and its environmental impact on the area between Sohag and El-Minia, Egypt. Arabian Journal of Geoscience, 4(1), 1–11. https://doi.org/10.1007/s12517-009-0048-y
  • Bag, R., Mondal, I., & Bandyopadhyay, J. (2019). Assessing the oscillation of channel geometry and meander migration cardinality of Bhagirathi River, West Bengal. India Journal of Geographical Science, 29(4), 613–634. https://doi.org/10.1007/s11442-019-1618-z
  • Bawa, N., Jain, V., Shekhar, S., Kumar, N., & Jyani, V. (2014). Controls on morphological variability and role of stream power distribution pattern, Yamuna River, western India. Geomorphology, 227, 60–72. https://doi.org/10.1016/j.geomorph.2014.05.016
  • Benn, P. C., & Erskine, W. D. (1994). Complex channel response to flow regulation: Cudgegong River below Windamere Dam, Australia. Applied Geography, 14(2), 153–168. https://doi.org/10.1016/0143-6228(94)90058-2
  • Bhattacharyya, K. (2011). The Lower Damodar River, India: Understanding the human role in changing fluvial environment. Springer.
  • Bhuiyan, M. A. H., Kumamoto, T., & Suzuki, S. (2015). Application of remote sensing and GIS for evaluation of the recent morphological characteristics of the lower Brahmaputra Jamuna River, Bangladesh. Earth Science India, 8(3), 551–568. https://doi.org/10.1007/s12145-014-0180-4
  • Block, D. (2014). Historical Channel-Planform Change of the Little Colorado River near Winslow, Arizona Scientific Investigations Report, U.S. Geological Survey, No. 2014–5112., Reston, VA. https://doi.org/10.3133/sir20145112
  • Bolton, S., & Shellberg, J. (2001). Aquatic habitat guidelines white paper: Ecological issues in floodplains and riparian corridors. Prepared for WA State Dept of Fish and Wildlife and others.
  • Boothroyd, R. J., Nones, M., & Guerrero, M. (2021). Deriving planform morphology and vegetation coverage from remote sensing to support river management applications. Frontiers in Environmental Science, 9, 657354. https://doi.org/10.3389/fenvs.2021.657354
  • Brice, J. C. (1964). Channel patterns and terraces of the Loup Rivers in Nebreska. United States Geological Survey Professional Papers, U.S. Govt. Print. Off. 422-D, 1-41. https://doi.org/10.3133/pp422d
  • Bridge, J. S. (2003). Rivers and Floodplains. Blackwell Publishing.
  • Brunier, G., Anthony, E. J., Goichot, M., Provansal, M., & Dussouillez, P. (2014). Recent morphological changes in the Mekong and Bassac river channels, Mekong delta: The marked impact of river-bed mining and implications for delta destabilization. Geomorphology, 224, 177–191. https://doi.org/10.1016/j.geomorph.2014.07.009
  • Chandra, S., & Sajwan, B. S. (2019). Supplementary Report to the Second Interim Report of the Monitoring Committee (YMC). Yamuna Pollution Monitoring Committee, National Green Tribunal (NGT).
  • Chandra, S., & Sajwan, B. S. (2020). Final report of the Yamuna Monitoring Committee (YMC). Yamuna Pollution Monitoring Committee, National Green Tribunal (NGT).
  • CPCB. (2005). Assessment and Development of River Basin Series: ADSORBS/41/2006-07. Water Quality Status of Yamuna River (1999-2005). Central Pollution Control Board, Ministry of environment & forests. 1–136.
  • Crosetto, M., & Tarantola, S. (2001). Uncertainty and sensitivity analysis: Tools for GIS-based model implementation. International Journal of Geographical Information Science, 15(5), 415–437. https://doi.org/10.1080/13658810110053125
  • Dabojani, D., Mithun, D., & Kanti, K. K. (2014). River change detection and bankline erosion recognition using remote sensing and GIS. Forum Geografic. Studii Si Cercetari De Geografie Si Protectia Mediului, 13(1), 12–17. https://doi.org/10.5775/fg.2067-4635.2014.038.i
  • Dade, W. B. (2000). Grain size, sediment transport and alluvial channel pattern. Geomorphology, 35(1), 119–126.
  • Dai, S. B., Yang, S. L., & Cai, M. (2008). Impacts of dams on the sediment flux of the Pearl River, southern China. Catena, 76(1), 36–43. https://doi.org/10.1016/j.catena.2008.08.004
  • Deb, M., and Ferreira, C. (2015). Planform channel dynamics and bank migration hazard assessment of a highly sinuous river in the north-eastern zone of Bangladesh. Environmental Earth Sciences, 73, 6613–6623.
  • DeVries, B., Huang, C., Armston, J., Huang, W., Jones, J. W., & Lang, M. W. (2020). Rapid and robust monitoring of flood events using sentinel-1 and Landsat data on the Google Earth Engine. Remote Sensing of Environment, 240, 111664. https://doi.org/10.1016/j.rse.2020.111664
  • Dewan, A., Corner, R., Saleem, A., Rahman, M. M., Haider, M. R., Rahman, M. M., & Sarker, M. H. (2017). Assessing channel changes of the Ganges-Padma River system in Bangladesh using Landsat and hydrological data. Geomorphology, 276, 257–279. https://doi.org/10.1016/j.geomorph.2016.10.017
  • Djekovic, V., Milosevic, N., Andjelkovic, A., Djurovic, N., Barovic, G., Vujacic, D., & Spalevic, V. (2016). Channel morphology changes in the river Pestan, Serbia. Journal of Environmental Protection and Ecology, 17, 1203–1213.
  • Donovan, M., Belmont, P., Notebaert, B., Coombs, T., Larson, P., & Souffront, M. (2019). Accounting for uncertainty in remotely-sensed measurements of river planform change. Earth-Science Reviews, 193, 220–236. https://doi.org/10.1016/j.earscirev.2019.04.009
  • Dragicevic, S., Tosic, R., Stepic, M., Zivkovic, N., & Novkovic, I. (2013). Consequences of the river bank erosion in the southern part of the Pannonian Basin: Case study – Serbia and the Republic of Srpska. Forum Geographic, 12(1), 5–15.
  • Eaton, B. C., Millar, R. G., & Davidson, S. (2010). Channel patterns: Braided, anabranching and single-thread. Geomorphology, 120(3–4), 353–364. https://doi.org/10.1016/j.geomorph.2010.04.010
  • Ghimire, G. R., DeVantier, B. A., & Sharma, S. (2020). Site-specific sediment deposition Mmodel for Dredging Planning: Case Sstudy of Olmsted Locks and Dam. Journal of Waterway, Port, Coastal, and Ocean Engineering, 146(5), 05020003. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000598
  • Ghosh, S., & Mistri, B. (2012). Investigating causes of floods in Damodar River of India: A geographical perspective. Indian Journal of Geomorphology, 17(1), 37–49.
  • Ghosh, K. (2014). Planform pattern of the lower Teesta River after the Gazaldoba barrage. Indian Journal of Geography & Environment, 13, 127–137.
  • Ghosh, A., Roy, M. B., & Roy, P. (2020). Estimation and prediction of the oscillation pattern of meandering geometry in a sub-catchment basin of Bhagirathi-Hooghly river, West Bengal, India. SN Applied Science, 2(9), 1497. https://doi.org/10.1007/s42452-020-03275-z
  • Gibson, S., Brunner, G., Piper, S., & Jensen, M. (2006). Sediment transport computations in HEC-RAS. In Eighth Federal Interagency Sedimentation Conference (8th FISC). Reno, NV, USA 57–64.
  • Gogoi, C., & Goswami, D. C. (2013). A study on bank erosion and bank line migration pattern of the Subansiri River in Assam using Remote Sensing and GIS techniques. The International Journal of Engineering and Science, 2(9), 1–6.
  • Gopal, B., & Chauhan, M. (2007). River Yamuna from Source to Delhi: Human Impacts and Approaches to Conservation. Restoring River Yamuna: Concepts, Strategies and Socio-Economic Considerations. National Institute of Ecology, New Delhi, 45–69.
  • Graf, W. L. (2000). Locational probability for a dammed, urbanizing Stream: Salt River, Arizona, USA. Environmental Management, 25(3), 321–335. https://doi.org/10.1007/s002679910025
  • Haque, S. M., Kannaujiya, S., Taloor, A. K., Keshri, D., Bhunia, R. K., Champati, R. P. K., & Chauhan, P. (2020). Identification of groundwater resource zone in the active tectonic region of Himalaya through earth observatory techniques. Groundwater for Sustainable Development, Elsevier, 10. https://doi.org/10.1016/j.gsd.2020.100337
  • Harpold, A. A., Marshall, J. A., Lyon, S. W., Barnhart, T. B., Fisher, B., Donovan, M., Brubaker, K. M., Crosby, C. J., Glenn, N. F., Glennie, C. L., Kirchner, P. B., Lam, N., Mankof, K. D., McCreight, J. L., Molotch, N. P., Musselman, K. N., Pelletier, J., Russo, T., Sangireddy, H. … Swetnam, T. (2015). Laser vision: Lidar as a transformative tool to advance critical zone science. Hydrology and Earth System Sciences Discussions, 12, 1017–1058. https://doi.org/10.5194/hessd-12-1017-2015
  • Hasanuzzaman, M., & Mandal, S. (2020). A morphology‑independent methodology to assess erosion, accretion and lateral migration of an alluvial channel using geospatial tools: A study on the Raidak‑I river of Himalayan Foothills. Sustainable Water Resources Management, 6(3), 35. https://doi.org/10.1007/s40899-020-00393-9
  • Hassan, M. A., Ratna, S. J., Hassan, M., & Tamanna, S. (2017). Remote sensing and GIS for the spatio-temporal change analysis of the east and the west river bank erosion and accretion of Jamuna River (1995-2015). Bangladesh. Journal of Geoscience and Environment Protection, 5(9), 79–92. https://doi.org/10.4236/gep.2017.59006
  • Hazarika, N., Das, A. K., & Borah, S. B. (2015). Assessing land-use changes driven by river dynamics in chronically flood affected Upper Brahmaputra plains, India, using RS-GIS techniques. Egypt Journal of Remote Sensing and Space Science, 18, 107–118. https://doi.org/10.1016/j.ejrs.2015.02.001
  • Hickin, E. J., & Nanson, G. C. (1984). Lateral migration rates of river bends. Journal of Hydraulic Engineering (ASCE), 110(11), 1557–1567. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1557)
  • Hooke, J. (2003). River meander behavior and instability: A framework for analysis. Transactions of the Institute of British Geographers, 28(2), 238–253. https://doi.org/10.1111/1475-5661.00089
  • Hughes, M. L., McDowell, P. F., & Marcus, W. A. (2006). Accuracy assessment of georectified aerial photographs: Implications for measuring lateral channel movement in a GIS. Geomorphology, 74(1–4), 1–16. https://doi.org/10.1016/j.geomorph.2005.07.001
  • Husain, A. (2015). Flood Peak Estimation at Hathnikund and Okhla Barrage. Journal of Civil Engineering and Environmental Technology, 2(13), 40–45.
  • Ibitoye, M. O. (2021). A remote sensing-based evaluation of channel morphological characteristics of part of lower river Niger, Nigeria. SN Applied Sciences, 3(3), 340. https://doi.org/10.1007/s42452-021-04215-1
  • Jia, Y., Wang, S. S., & Xu, Y. (2002). Validation and application of a 2D model to channels with complex geometry. International Journal of Computational Engineering Science, 3(1), 57–71. https://doi.org/10.1142/S146587630200054X
  • Jiang, C., Pan, S. Q., & Chen, S. L. (2017). Recent morphological changes of the Yellow River (Huanghe) submerged delta: Causes and environmental implications. Geomorphology, 293, 93–107. https://doi.org/10.1016/j.geomorph.2017.04.036
  • Kiiveri, H. T. (1997). Assessing, representing and transmitting positional uncertainty in maps. International Journal of Geographical Information Science, 11(1), 33–52. https://doi.org/10.1080/136588197242482
  • Kumar, M., Sharif, M., & Ahmed, S. (2017). Flood risk management strategies for national capital territory of Delhi, India. ISH Journal of Hydraulic Engineering. https://doi.org/10.1080/09715010.2017.1408434
  • Kummu, M., Lu, X. X., Wang, J. J., & Varis, O. (2010). Basin-wide sediment trapping efficiency of emerging reservoirs along the Mekong. Geomorphology, 119(3–4), 181–197. https://doi.org/10.1016/j.geomorph.2010.03.018
  • Laha, C., & Bandyapadhyay, S. (2013). Analysis of the changing morphometry of River Ganga, shift monitoring and vulnerability analysis using space-borne techniques: A statistical approach. International Journal of Scientific Publications, 3(7), 1–10.
  • Langendoen, E. J., Simon, A., & Thomas, R. E. (2001). CONCEPTS-A process-based modeling tool to evaluate stream-corridor restoration designs Wetlands Engineering & River Restoration Conference August 27-31, D. F. Hayes, Ed., American Society of Civil Engieers Reno, Nevada, United States, 1–11. https://doi.org/10.1061/40581(2001)109
  • Lea, D. M., & Legleiter, C. J. (2016). Refining measurements of lateral channel movement from image time series by quantifying spatial variations in registration error. Geomorphology, 258, 11–20. https://doi.org/10.1016/j.geomorph.2016.01.009
  • Lee, J. W., Teubner, M. D., Nixon, J. B., & Gill, P. M. (2016). A 3-D non-hydrostatic pressure model for small amplitude free surface flows. International Journal for Numerical Methods in Fluids, 50(6), 629_672. https://doi.org/10.1002/fld.1054
  • Li, H., Xu, X., Wu, M., & Liu, Z. (2021). Spatiotemporal evolution trajectory of channel morphology and controlling factors of Yongding River, Beijing, China. Water, 13(11), 1489. https://doi.org/10.3390/w13111489
  • Magliulo, P., Bozzi, F., & Pignone, M. (2016). Assessing the planform changes of the Tammaro River (southern Italy) from 1870 to 1955 using a GIS-aided historical map analysis. Environmental Earth Sciences, 75(4), 1–19. https://doi.org/10.1007/s12665-016-5266-5
  • McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  • Merritt, D. M., & Wohl, E. E. (2003). Downstream hydraulic geometry and channel adjustment during a flood along an ephemeral, arid-region drainage. Geomorphology, 52(3–4), 165–180. https://doi.org/10.1016/S0169-555X(02)00241-6
  • Milton, E. J., Gilvear, D. J., & Hooper, I. D. (1995). In A. Gurnell, & G. Petts (Eds.), Changing River Channels (pp. 276–301). Chichester: John Wiley and Sons.
  • Mount, N., & Louis, J. (2005). Estimation and propagation of error in measurements of river channel movement from aerial imagery. Earth Surface Processes and Landforms, 30(5), 635–643. https://doi.org/10.1002/esp.1172
  • Musarat, M. A., Alaloul, W. S., Rabbani, M. B. A., Ali, M., Altaf, M., Fediuk, R., Vatin, N., Klyuev, S., Bukhari, H., Sadiq, A., Rafiq, W., Farooq, W. 2021. Kabul River flow prediction using automated ARIMA forecasting: A machine learning approach. Sustainability, 13, 10720. https://doi.org/10.3390/su131910720
  • Nabi, M.R., Rashid, M.S., Hossain, M.I. (2016). Historical Bankline Shifting Since 1760s: A GIS and Remote Sensing Based Case Study of Meghna River Plate of Rennell’s Atlas. International Journal of Scientific and Research Publications, 6(12), 473–483.
  • Nicoll, T. J., & Hickin, E. J. (2010). Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomorphology, 116(1–2), 37–47. https://doi.org/10.1016/j.geomorph.2009.10.005
  • Ollero, A. (2010). Channel changes and floodplain management in the meandering middle Ebro River, Spain. Geomorphology, 117(3–4), 247–260. https://doi.org/10.1016/j.geomorph.2009.01.015
  • Pal, R. (2017). Meandering-braiding aspects of the middle-lower part of the Ganga River, India. Journal of Indian Geophysics Union, 21(3), 191–197.
  • Pal, R., & Pani, P. (2019). Remote sensing and GIS-based analysis of evolving planform morphology of the middle lower part of the Ganga River, India. The Egyptian Journal of Remote Sensing and Space Science, 22(1), 1–10. https://doi.org/10.1016/j.ejrs.2018.01.007
  • Pathak, D., Gajurel, A. P., & Shrestha, G. B. (2007). Study of river shifting of KodkuKhola in Kathmandu Valley using remotely sensed data. Journal of Nepal Geological Society, 36(Sp. Issue), 28. https://www.nepjol.info/index.php/JNGS/article/view/788
  • Pati, J. K., Lal, J., Prakash, K., & Bhusan, R. (2008). Spatio-temporal shift of Western Bank of the Ganga River, Allahabad City and its implications. Indian.Soc.Remote Sens.Springer.vol, 36(3), 289–297. https://doi.org/10.1016/j.geomorph.2017.04.036
  • Perkins, S. J. (1993). Green River channel migration study. King County Dept of Public Works, Surface Water Management Division, Seattle, WA.
  • Perkins, S. J. (1996). Channel migration in the three forks area of the Snoqualmie River. King County Department of Natural Resources, Surface Water Management Division, Seattle, Washington.
  • Pollen-Bankhead, N., & Simon, A. (2010). Hydrologic and hydraulic effects of riparian root networks on streambank stability: Is mechanical root-reinforcement the whole story? Geomorphology, 116(3–4), 353–362. https://doi.org/10.1016/j.geomorph.2009.11.013
  • Pourbakhshian, S., Pouraminian, M. (2015). Stochastic modeling to prediction of river morphological changes. Indian Journal of Science and Technology, 8 (11), 1–10.
  • Rai, R. K., Upadhyay, A., Shekhar, C., Ojha, P., Vijay, P., & Singh, V. P. (2011). The Yamuna River Basin: Water Resources and Environment (Vol. 66, pp. 14–15). Springer Netherlands.
  • Ralph, T. J., & Hesse, P. (2010). Downstream hydrogeomorphic changes along the Macquarie River, southeastern Australia, leading to channel breakdown and floodplain wetlands. Geomorphology, 118(1–2), 48–64. https://doi.org/10.1016/j.geomorph.2009.12.007
  • Raychaudhuri, S. P., Aggarwal, R. R., DattaBiswas, N. R., Gupta, S. P., & Thomas, P. K. (1963). Soils of India. Indian Council of Agricultural Research.
  • Ronco, P., Fasolato, G., Nones, M., & Di Silvio, G. (2010). Morphological effects of damming on lower Zambezi River. Geomorphology, 115(1–2), 43–55. https://doi.org/10.1016/j.geomorph.2009.09.029
  • Rosgen, D. L. (1994). A classification of natural rivers. Catena, 22(3), 169–199. https://doi.org/10.1016/0341-8162(94)90001-9
  • Rosgen, D. L. (1996). Applied river morphology. Wildland Hydrology.
  • Rowland, J.C., Shelef, E., Pope, P.A., Muss, J., Gangodagamage, C., Brumby, S.P., Wilson, C.J. (2016). A morphology independent methodology for quantifying planview river change and characteristics from remotely sensed imagery. Remote Sensing of Environment, 184, 212–228 doi:https://doi.org/10.1016/j.rse.2016.07.005.
  • Saleem, A., Dewan, A., Rahman, M. M., Nawfee, S. M., Karim, R., & Lu, X. X. (2020). Spatial and temporal variations of erosion and accretion: A case of a large tropical river. Earth Systems and Environment, 4(1), 167–181. https://doi.org/10.1007/s41748-019-00143-8
  • Sapkale, J. B., Kadam, Y. U., Jadhav, I. A., & Kamble, S. S. (2016). River in planform and variation in sinuosity index: A study of Dhamni River, Kolhapur (Maharashtra), India. International Journal of Scientific Engineering and Research, 7(2), 863–867.
  • Sarkar, A., Garg, R. D., & Nayan, S. (2012). RS-GIS Based Assessment of River Dynamics of Brahmaputra. River in India. Journal of Water Resource and Protection, 4(2), 63–72. https://doi.org/10.4236/jwarp.2012.42008
  • Sarker, M. H., Thorne, C. R., Aktar, M. N., & Ferdous, M. R. (2014). Morpho-dynamics of the Brahmaputra-Jamuna River, Bangladesh. Geomorphology, 215(2), 45–59. https://doi.org/10.1016/j.geomorph.2013.07.025
  • Schook, D. M., Rathburn, S. L., Friedman, J. M., & Wolf, J. M. (2017). A 184-year record of river meander migration from tree rings, aerial imagery, and cross sections. Geomorphology, 293, 227–239. https://doi.org/10.1016/j.geomorph.2017.06.001
  • Schwenk, J., Khandelwal, A., Fratkin, M., Kumar, V., & Foufoula-Georgiou, E. (2017). High spatiotemporal resolution of river planform dynamics from Landsat: The RivMAP toolbox and results from the Ucayali River. Earth and Space Science, 4(2), 46–75. https://doi.org/10.1002/2016EA000196
  • Shannon, & Wilson. (1991). Tolt and Raging Rivers channel migration study, King County, Washington, with maps. Prepared for Surface Water Management Division. King County Department of Public Works, Seattle, WA by Shannon & Wilson, Inc.
  • Sichangi, A. W., Wang, L., & Hu, Z. (2018). Estimation of river discharge solely from remote-sensing derived data: An initial study over the Yangtze River. Remote Sensing, 10(9), 1385. https://doi.org/10.3390/rs10091385
  • Singh, A., & Balachandar, R. (2011). Structure of wake of a sharp-edged bluff body in a shallow channel flow. Journal of Fluids and Structures, 27(2), 233–249. https://doi.org/10.1016/j.jfluidstructs.2010.11.001
  • Sinha, R. (2014). The Koshi Megafan: The best-known Himalayan Megafan. In K. V.s (Ed.), Landscapes and Landforms of India (pp. 151–156). Springer. https://doi.org/10.1007/978-94-017-8029-2_14
  • Skalski, T., Kędzior, R., Wyzga, B., Radecki-Pawlik, A., Plesiński, K., & Zawiejska, J. (2016). Impact of incision of gravel-bed rivers on ground beetle assemblages. River Research & Applications, 32(9), 1968–1977. https://doi.org/10.1002/rra.3027
  • Soni, V., Shekhar, S., & Singh, D. (2014). Environmental flow for the Yamuna river in Delhi as an example of monsoon rivers in India. Current Science, 106(4), 558–564. https://www.jstor.org/stable/24100063
  • Sun, T., Meakin, P., & Jøssang, T. (2001). Meander migration and the lateral tilting of floodplains. Water Resources Research, 37(5), 1485–1502. https://doi.org/10.1029/2000WR900343
  • Takagi, T., Oguchi, T., Matsumoto, J., Grossman, M. J., Sarker, M. H., & Matin, M. A. (2007). Channel braiding and stability of the Brahmaputra River, Bangladesh, since 1967: GIS and remote sensing analyses. Geomorphology, 85(3–4), 294–305. https://doi.org/10.1016/j.geomorph.2006.03.028
  • Tamura, T., Horaguchi, K., Saito, Y., Van, L. N., Tateishi, M., Thi, K. O. T., Nanayama, F., & Watanabe, K. (2010). Monsoon-influenced variations in morphology and sediment of a mesotidal beach on the Mekong River delta coast. Geomorphology, 116(1–2), 11–23. https://doi.org/10.1016/j.geomorph.2009.10.003
  • Tandon, S. K., Sinha, R., Gibling, M. R., Dasgupta, A.S., and Ghazanfari, P. (2008). Late Quaternary Evolution of the Ganga Plains: Myths and Misconceptions, Recent Developments and Future Directions. Golden Jubilee Memoir of the Geological Society of India, 66, 259–299.
  • Tiwari, H., & Nayan, S. (2014). Bank shifting of river Ganga in the downstream of Bhagalpur Vikramshila Setu. Journal of River Engineering, 2(4), 1–3.
  • Tobón-Marín, A., & Cañón Barriga, J. (2020). Analysis of changes in rivers planforms using Google Earth Engine. International Journal of Remote Sensing, 41(22), 8654–8681. https://doi.org/10.1080/01431161.2020.1792575
  • Tosic, R., Lovric, N., & Dragicevic, S. (2014). Land use changes caused by bank erosion along the lower part of the Bosna River from 2001 to 2013. Bulletin of the Serbian Geographical Society, 94(4), 49–58. https://doi.org/10.2298/GSGD1404049T
  • Truong, S. H., Ye, Q., & Stive, M. J. F. (2017). Estuarine mangrove squeeze in the Mekong Delta, Vietnam. Journal of Coastal Research, 33(4), 747–763. https://doi.org/10.2112/JCOASTRES-D-16-00087.1
  • Turki, I., Medina, R., Gonzalez, M., & Coco, G. (2013). Natural variability of shoreline position: Observations at three pocket beaches. Marine Geology, 338, 76–89. https://doi.org/10.1016/j.margeo.2012.10.007
  • Vercruysse, K., & Grabowski, R. C. (2021). Human impact on river planform within the context of multi-timescale river channel dynamics in a Himalayan river system. Geomorphology, 381, 107659. https://doi.org/10.1016/j.geomorph.2021.107659
  • Verma, R. K., Ashwini, K., Singh, A. (2021). Channel morphology and prediction of mid-line channel migration in the reach of Ganga River using GIS and ARIMA modeling during 1975–2020. H2Open Journal, 4 (1): 321–335. https://doi.org/10.2166/h2oj.2021.124
  • Wang, S., Li, L., Ran, L., & Yan, Y. (2016). Spatial and temporal variations of channel lateral migration rates in the Inner Mongolian reach of the upper Yellow River. Environmental Earth Sciences, Springer, 75(18), 1255. https://doi.org/10.1007/s12665-016-6069-4
  • Wang, W., Lu, H., Yang, D., Sothea, K., Jiao, Y., Gao, B., Peng, X., & Pang, Z. (2016). Modelling hydrologic processes in the Mekong River basin using a distributed model driven by satellite precipitation and rain gauge observations. PLOS ONE, 11(3), 22–29. https://doi.org/10.1371/journal.pone.0152229
  • Ward, J. V., Tockner, K., & Schiemer, F. (1999). Biodiversity of floodplain river ecosystems: Ecotones and connectivity. Regulated Rivers Research & Management, 15(1–3), 125–139. https://doi.org/10.1002/(SICI)1099-1646(199901/06)15:1/3<125::AID-RRR523>3.0.CO;2-E
  • Werbylo, K. L., Farnsworth, J. M., Baasch, D. M., & Farrell, P. D. (2017). Investigating the accuracy of photointerpreted unvegetated channel widths in a braided river system: A Platte River case study. Geomorphology, 278, 163–170. https://doi.org/10.1016/j.geomorph.2016.11.003
  • Wheaton, J. M., Brasington, J., Darby, S. E., & Sear, D. A. (2010). Accounting for uncertainty in DEMs from 1174 repeat topographic surveys: Improved sediment budgets. Earth Surface Processes and Landforms, 1175(35), 136–156. https://doi.org/10.1002/esp.1886
  • Williams, G. P., & Wolman, M. G. 1984. Downstream effects of dams on alluvial rivers. In Peck, Dallas L. (Ed.), Professional Paper (Vol. 1286–1289, pp. 83). Geological Survey. https://doi.org/10.3133/pp1286
  • Xia, J. Q., Li, X. J., Li, T., Zhang, X. L., & Zong, Q. L. (2014). Response of reach-scale bank full channel geometry in the Lower Yellow River to the altered flow and sediment regime. Geomorphology, 213(4), 255–265. https://doi.org/10.1016/j.geomorph.2014.01.017
  • Yao, Z., Ta, W., Jia, X., & Xiao, J. (2011). Bank erosion and accretion along the Ningxia–Inner Mongolia reaches of the Yellow River from 1958 to 2008. Geomorphology, 127(1–2), 99–106. https://doi.org/10.1016/j.geomorph.2010.12.010
  • Yao, Z., Xiao, J., Ta, W., & Jia, X. (2013). Planform Channel Dynamics along the Ningxia–Inner Mongolia Reaches of the Yellow River from 1958 to 2008: Analysis Using Landsat Images and Topographic Maps. Environmental Earth Sciences, 70(1), 97–106. https://doi.org/10.1007/s12665-012-2106-0
  • Zhang, W., Xu, Y., Hoitink, A. J. F., Sassi, M. G., Zheng, J., Chen, X., & Zhang, C. (2015). Morphological change in the Pearl River delta, China. Marine Geology, 363, 202–219. https://doi.org/10.1016/j.margeo.2015.02.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.