548
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Periglacial landforms and soil formation on summit of the Mount lda (Kaz Dağı), Biga Peninsula-Turkey

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 531-580 | Received 27 Oct 2020, Accepted 14 Jun 2022, Published online: 10 Jul 2022

References

  • Ackert, R. P. (1998). A rock glacier/debris-covered glacier system at Galena Creek, Absaroka Mountains, Wyoming. Geografiska Annaler, 80(3–4), 267–276. https://doi.org/10.1111/j.0435-3676.1998.00042.x
  • Akçar, N., Yavuz, V., Ivy-Ochs, S., Reber, R., Kubik, P. W., Zahno, C., & Schlüchter, C. (2014). Glacier response to the change in atmospheric circulation in the eastern Mediterranean during the Last Glacial Maximum. Quaternary Geochronology, 19, 27–41. https://doi.org/10.1016/j.quageo.2013.09.004
  • Akçar, N., Yavuz, V., Yeşilyurt, S., Ivy-Ochs, S., Reber, R., Bayrakdar, C., Kubik, P. W., Zahno, C., Schlunegger, F., & Schlüchter, C. (2017). Synchronous last glacial maximum across the Anatolian peninsula. P. D. Hughes & J. C. Woodward (Eds.), Quaternary Glaciation in the Mediterranean Mountains (Vol. 433, pp. 251–269). Geological Society of London, Special Publications. https://doi.org/10.1144/SP433.7
  • Altın, T. (2006). Periglacial geomorphological landforms on Aladağ and Bolkar Mountains. Turkish Geographical Review, 46, 105–122. https://dergipark.org.tr/tr/download/article-file/198519
  • Altınay, O., Sarıkaya, M. A., & Çiner, A. (2020). Late-glacial to Holocene glaciers in the Turkish mountains. Mediterranean Geoscience Reviews, 2(1), 119–133. https://doi.org/10.1007/s42990-020-00025-6
  • Atalay, İ. 2008. Ecosystem Ecology and Geography I-II. İzmir. META Publishing.
  • Azzoni, R. S., Zerboni, A., Pelfini, M., Garzonio, C. A., Cioni, R., Meraldi, E., Smiraglia, C., & Diolaiuti, G. A. (2017). Geomorphology of Mount Ararat/Ağrı Dağı (Ağrı Dağı National Park, Eastern Anatolia, Turkey). Journal of Maps, 13(2), 182–190. https://doi.org/10.1080/17445647.2017.1279084
  • Azzoni, R. S., Sarıkaya, M. A., & Fugazza, D. (2020). Turkish glacier inventory and classification from high‑resolution satellite data. Mediterranean Geoscience Reviews, 2(1), 153–162. https://doi.org/10.1007/s42990-020-00029-2
  • Azzoni, R. S., Bollati, I. M., Manuela, P., Sarıkaya, M. A., & Zerboni, A. (2022). Geomorphology of a recently deglaciated high mountain area in Eastern Anatolia (Turkey). Journal of Maps, 1–10. https://doi.org/10.1080/17445647.2022.2035269
  • Ballantyne, C. K. (1996). Formation of miniature sorted patterns by shallow ground freezing: A field experiment. Permafrost and Periglacial Processes, 7(4), 409–424. https://doi.org/10.1002/(SICI)1099-1530(199610)7:4<409::AID-PPP230>3.0.CO;2-3
  • Barrows, T. T., Stone, J. O., & Fifield, L. K. (2004). Exposure ages for Pleistocene periglacial deposits in Australia. Quaternary Science Reviews, 23(5–6), 697–708. https://doi.org/10.1016/j.quascirev.2003.10.011
  • Bayrakdar, C. (2018). Traces of Late Pleistocene glaciations in Tekeli Mountain (Tokat). Journal of Geomorphological Researches, 1(1), 13–25.
  • Bayrakdar, C., Çılğın, Z., & Keserci, F. (2020). Traces of late quaternary glaciations and paleoclimatic interpretation of Mount Akdağ (Alanya, 2451 m), Southwest Turkey. Mediterranean Geoscience Reviews, 2(1), 135–151. https://doi.org/10.1007/s42990-020-00026-5
  • Bell, R., McNeill, L., Bull, J., Henstock, T., Collier, R., & Leeder, R. (2009). Fault Architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece. Basin Research, 21(6), 824–855. https://doi.org/10.1111/j.1365-2117.2009.00401.x
  • Beret, B. (1956). Glacial traces on Çakırgöl mountain. Turkish Geographical Review, 15-16, 115–125. https://dergipark.org.tr/en/download/article-file/198986
  • Bilgin, T. (1960). About periglacial landforms on Mount Kaz. Turkish Geographical Review, 20, 114–123. https://dergipark.org.tr/tr/download/article-file/198949
  • Bilgin, T. (1969a). Glacial and Periglacial Topographical Landforms on Gâvur Mountain. 1494. Publications of İstanbul University.
  • Bilgin, T. (1969b). Geomorphology of Biga Peninsula (SW Region). 1433. Publications of İstanbul University.
  • Bilgin, T. (1972). Glacial and Periglacial Geomorphology of Eastern Part of Munzur Mountains. 1757. Publications ofİstanbul University.
  • Birman, J. H. (1968). Glacial reconnaissance in Turkey. Geological Society of America Bulletin, 79(8), 1009–1026.
  • Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of soils 1. Agronomy Journal, 43(9), 435–438. https://doi.org/10.2134/agronj1951.00021962004300090005x
  • Bradley, R. S., & Jones, P. D. (1993). ‘Little Ice Age’ summer temperature variations: Their nature and relevance to recent global warming trends. The Holocene, 3(4), 367–376. https://doi.org/10.1177/095968369300300409
  • Çakır, Ç., & Kopar, İ. (2017). Hummock (Thufur) formation in Palandöken Mountains and effect of natural environmental characteristics on hummock formation. International symposium on geomorphology, proceedings book,12-14 October 2017, 103–110.
  • Çiftçi, N., & Bozkurt, E. (2009). Pattern of normal faulting in the Gediz Graben, SW Turkey. Tectonophysics, 473(1–2), 234–260. https://doi.org/10.1016/j.tecto.2008.05.036
  • Çılğın, Z. (2020). 3D surface modeling of Late Pleistocene glaciers in the munzur mountains (Eastern Turkey) and its paleoclimatic implications. Turkish Journal of Earth Sciences, 29(5), 714–732. https://doi.org/10.3906/yer-1905-18
  • Çiner, A. (2004). Turkish Glaciers and Glacial Deposits. In J. Ehlers & P. L. Gibbard (Eds.), Quaternary glaciations: extent and chronology, part I (pp. 419–429). Europe, Elsevier. https://doi.org/10.1016/S1571-0866(04)80093-9
  • Clark, D. H., Steig, E. J., Potter, N., & Gillespie, A. R. (1998). Genetic variability of rock glaciers. Geografiska Annaler, 80(3–4), 175–182. https://doi.org/10.1111/j.0435-3676.1998.00035.x
  • Colucci, R. R., Boccali, C., Zebre, M., & Guglielmin, M. (2016). Rock glaciers, protalus ramparts and pronival ramparts in the south-eastern Alps. Geomorphology, 269, 112–121. https://doi.org/10.1016/j.geomorph.2016.06.039
  • Costard, F., Gautier, E., Konstantinov, P., Bouchard, F., Séjourné, A., Dupeyrat, L., & Fedorov, A. (2022). Thermal regime variability of islands in the Lena River near Yakutsk, eastern Siberia. Permafrost and Periglacial Processes, 33(1), 18–31. https://doi.org/10.1002/ppp.2136
  • Davis, P. H. (1965-1985). Flora of Turkey and The East Aegean Islands (Vols. 1-9). Edinburgh University Press.
  • Davis, P. H. (1988). Flora of Turkey and The East Aegean Islands (Vol. 10, (supplement 1)). Edinburgh University Press.
  • Dede, V., Çiçek, İ., & Uncu, L. (2015). Formations of rock glacier in Karçal Mountains. Bulletin Earth Science Applied Research, 36(2), 61–80. https://doi.org/10.17824/yrb.90910
  • Dede, V., Çiçek, İ., Sarıkaya, M. A., Çiner, A., & Uncu, L. (2017). First cosmogenic geochronology from the Lesser Caucasus: Late Pleistocene glaciation and rock glacier development in the Karçal Valley, NE Turkey. Quaternary Science Reviews, 164, 54–67. https://doi.org/10.1016/j.quascirev.2017.03.025
  • Dede, V., Dengiz, O., Demirağ Turan, İ., Türkeş, M., Gökçe, C., & Serin, S. (2020). Determination of some relationships between soil erodibility properties and physicochemical of soils formed on various periglacial landforms in Ilgaz Mountains. Turkish Journal of Geographical Sciences, 18(1), 99–123. https://doi.org/10.33688/aucbd.689755
  • Dede, V., Dengiz, O., Zorlu, B. Ş., & Zorlu, K. (2021). The effect of temperature change due to elevation on soil properties in periglacial landforms in Ilgaz Mountains. TurkishGeographical Review, 78(2), 23–32. https://doi.org/10.17211/tcd.1002568
  • Demoulin, A., Bayer Altın, T., & Beckers, A. (2013). Morphometric age estimate of the last phase of accelerated uplift in the Kazdağ area (Biga Peninsula, NW Turkey). Tectonophysics, 608, 1380–1393. https://doi.org/10.1016/j.tecto.2013.06.004
  • Dengiz, O., & Başkan, O. (2010). Characterization of soil profile development on different landscape in semi-arid Region of Turkey a case study; Ankara-Soğulca catchment. Anadolu Journal of Agricultural Sciences, 25(2), 106–112. https://dergipark.org.tr/tr/download/article-file/187752
  • Dengiz, O. (2010). Morphology, physico-chemical properties and classification of soils on terraces of the Tigris River in the South-East Anatolia region of Turkey. Journal of Agricultural Sciences, 16(3), 205–212. https://doi.org/10.1501/Tarimbil_0000001139
  • Dengiz, O., Sağlam, M., Özaytekin, H. H., & Başkan, O. (2013). Weathering rates and some physico-chemical characteristics of soils developed on a calcic toposequences. Carpathian Journal of Earth and Environmental Sciences, 8(2), 13–24. http://www.cjees.ro/viewTopic.php?topicId=315
  • Dengiz, O., & Şenol, H. (2018). Effect of toposequences on geochemical mass balance and clay mineral formation in soils developed on basalt parent material under subhumid climate condition. Indian Journal of Geo Marine Science, 47(9), 1809–1820.
  • Doğu, A. F., Somuncu, M., Çiçek, İ., Tunçel, H., & Gürgen, G. (1993). Glacier landforms, yaylas and tourism on the Kaçkar Mountains. Turkish Geography Bulletin Ankara University, 2, 157–183. http://tucaum.ankara.edu.tr/wp-content/uploads/sites/280/2015/08/tucaum2_6.pdf
  • Doğu, A. F. (2019). Pleistocene glacier heritage and present-day glaciers in the Southeastern Taurus (İhtiyar Şahap Mountains). In C. Kuzucuoğlu, A. Çiner, & N. Kazancı (Eds.), Landscapes and Landforms of Turkey, World Geomorphological Landscapes series (pp. 413–422). Switzerland: Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-03515-0_21
  • Drewes, J., Moreiras, S., & Korup, O. (2018). Permafrost activity and atmospheric warming in the Argentinian Andes. Geomorphology, 323(2018), 13–24. https://doi.org/10.1016/j.geomorph.2018.09.005
  • Duru, M., Pehlivan, Ş., Ilgar, A., Dönmez, M., & Akçay, A. E. (2007). Geological maps of Turkey scaled of 1/100.000 Ayvalık I-17 sheet. General Directorate of Mineral Research and Exploration, 98.
  • Erinç, S. (1944). Glazial Morphologhie Untersuchungen im Nordostanatolischen Randgebirge. Ph.D. Dissertation Series I, Geographical Institute of the University of İstanbul.
  • Erinç, S. (1949). Glacial morphology researches on Uludağ. Turkish Geographical Review, 11-12, 79–94. https://dergipark.org.tr/en/download/article-file/198646
  • Erinç, S. (1952). Glacial evidences of the climatic variations in Turkey. Geografiska Annaler, 34, 89–98. https://doi.org/10.2307/520146
  • Erinç, S. (1953). From Van to Cilo Mountains. Review of the Geographical Institute University of Istanbul, 3(4), 84–106.
  • Erinç, S. (1955). Glacial ve periglacial geomorphology on Honaz and Bozdağ. Turkish Geographical Review, 13-14, 24–44. https://dergipark.org.tr/en/download/article-file/199000
  • Erinç, S., Bilgin, T., & Bener, M. (1961). Periglacial landforms on Ilgaz. Review of the Geographical Institute University of Istanbul, 12, 90–99.
  • Erinç, S. (1965). A Research on the Impacts of Precipitation and a New Index (pp. 41). Geographical Institute of the University of İstanbul.
  • Erol, O. (1982). Geomorphologic results of the west Anatolia and its young tectonic. Geology Congress of Turkey on West Anatolia Young Tectonic and Its Volcanism, 15–21.
  • Fao/Wrb. (2014). World reference base for soil resources 2014 international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, 106, 1-203. https://www.iec.cat/mapasols/DocuInteres/PDF/Llibre42.pdf
  • Feuillet, T., & Matsuoka, N. (2014). Periglacial Landforms. In Encyclopedia of Planetary Landforms. New York, NY: Springer. https://doi.org/10.1007/978-1-4614-9213-9_258-1
  • Fielding, C. R., Alexander, J., & Allen, J. P. (2018). The role of discharge variability in the formation and preservation of alluvial sediment bodies. Sedimentary Geology, 365, 1–20. https://doi.org/10.1016/j.sedgeo.2017.12.022
  • Floyd, M., Billiris, H., Paradissis, D., Veis, G., Avallone, A., Briole, P., McClusky, S., Nocquet, J. M., Palamartchouk, K., Parsons, B., & England, P. (2010). A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean. Journal of Geophysical Research, 115(B10), B10403. https://doi.org/10.1029/2009JB007040
  • French, H. M. (1996). The Periglacial Environment (Second ed.). Longman.
  • French, H. M. (2007). The Periglacial Environment (Third ed.). John Wiley & Sons Ltd.
  • French, H. M. (2018). The Periglacial Environment (Fourth ed.). John Wiley & Sons.
  • Gee, G. W., & Bauder, J. W. (1986) Particle Size Analysis. In A. Klute (Ed.), Methods of soil analysis, Part 1. Physical and mineralogical methods (Vol. 9, 383–411, 2nd ed. Agronomy). American Society of Agronomy. https://doi.org/10.2136/sssabookser5.1.2ed.c15
  • Giardino, J. R., Shroder, J. F., & Vitek, J. D. (1987). Rock Glaciers. Allen & Unwin.
  • Graham, R. C. (2006). Basic Concepts and Future Challenges.eds. Giacomo Certini and Riccardo Scalenghe (pp. 151–163). Published by Cambridge University Press.
  • Hagg, W., Mayer, C., Mayr, E., & Heilig, A. (2012). Climate and glacier fluctuations in the Bavarian Alps in the past 120 years. Erdkunde, 66(2), 121–142. https://doi.org/10.2307/41759064
  • Harris, S. A., French, H. M., Heginbottom, J. A., Johnston, G. H., Ladanyi, B., Sego, D. C., & Van Everdingen, R. O. (1988). Glossary of Permafrost and Related Ground-Ice Terms Technical memorandum, 142, Permafrost Subcommittee. National Research Council of Canada. https://doi.org/10.4224/20386561.
  • Hughes, P. D., Woodward, J. C., Gibbard, P. L., Macklin, M. G., Gilmour, M. A., & Smith, G. R. (2006). Quaternary glacial stratigraphy and geochronology of the Pindus Mountains, Greece. Journal of Geology, 114(4), 413–434. https://doi.org/10.1086/504177
  • Hughes, P. D., & Woodward, J. C. (2008). Timing of glaciation in the Mediterranean mountains during the last cold stage. Journal of Quaternary Science, 23(6–7), 575–588. https://doi.org/10.1002/jqs.1212
  • Hughes, P. D., & Woodward, J. C. (2009). Glacial and Periglacial Environments. In J. C. Woodward (Ed.), The Physical Geography of the Mediterranean (pp. 353–383). Oxford University Press. https://doi.org/10.1093/oso/9780199268030.003.0024
  • Hughes, P. D. (2010). Little Ice Age glaciers in Balkans: Low altitude glaciation enabled by cooler temperatures and local topoclimatic controls. Earth Surface Processes and Landforms, 35, 229–241. https://doi.org/10.1002/esp.1916
  • Hughes, P. D. (2014). Little Ice Age glaciers in the Mediterranean mountains. Mediterranée, 122(122), 63–79. https://doi.org/10.4000/mediterrane.7146
  • Hughes, P. D. (2018). Little Ice Age glaciers and climate in the Mediterranean Mountains: A New Analysis. Cuadernos de Investigación Geográfica, 44(1), 15–46. https://doi.org/10.18172/cig.3362
  • Humlum, O. (1996). Origin of Rock Glaciers: Observations from Mellemfjord, Disko Island, Central West Greenland. Permafrost and Periglacial Processes, 7(4), 361–380. https://doi.org/10.1002/(SICI)1099-1530(199610)7:4<361::AID-PPP227>3.0.CO;2-4
  • İyigün, C., Türkeş, M., Batmaz, İ., Yozgatlıgil, C., Purutçuoğlu, V., Kartal Koç, E., & Öztürk, M. Z. (2013). Clustering current climate regions of Turkey by using a multivariate statistical method. Theoretical Applied Climatolology, 114(1–2), 95–106. https://doi.org/10.1007/s00704-012-0823-7
  • Johnson, P. G. (1978). Rock glacier types and their drainage systems, Grizzly Creek, Yukon Territory. Canadian Journal of Earth Sciences, 15(9), 1496–1507. https://doi.org/10.1139/e78-155
  • Jones, P. D., & Bradley, R. S. (1992). Climatic variations over the last 500 years. In R. S. Bradley & P. D. Jones (Eds.), Climate since AD 1500 (pp. 649–665). Routledge.
  • Kahraman, N. (2015). Glacial traces on Mescit mountain. The Journal of Academic Social Science Studies (JASSS), 34(Number: 34), 41–51. https://doi.org/10.9761/JASSS2829
  • Knight, J., Harrison, S., & Jones, D. B. (2019). Rock glaciers and the geomorphological evolution of deglacierizing mountains. Geomorphology, 324(2019), 14–24. https://doi.org/10.1016/j.geomorph.2018.09.020
  • Koç, T., & Arslan, E. (2011). Distribution (horizontal/vertical) properties of forest cover around Kaz Mountain and its surroundings. In: International Participation III. National Symposium of Kaz Mountains, Proceedings Book, 24-26 May 2012, Edremit-Güre, Balıkesir.
  • Konrad, S. K., Humphrey, N. F., Steig, E. J., Clark, D. H., Potter, N., & Pfeffer, W. T. (1999). Rock glacier dynamics and paleoclimatic implications. Geology, 27(9), 1131–1134. https://doi.org/10.1130/0091-7613(1999)027<1131:RGDAPI>2.3.CO;2
  • Krenek, L. (1932). Gletscher im pontischen Gebirge (Lazistan). Zeitschrift für Gletscherkunde, 20, 129–131.
  • Křížek, M., & Uxa, T. (2013). Morphology, sorting and microclimates of relict sorted polygons, Krkonose Mountains, Czech Republic. Permafrost and Periglacial Processes, 24(4), 313–321. https://doi.org/10.1002/ppp.1789
  • Křížek, M., Krause, D., Uxa, T., Engel, Z., Treml, V., & Traczyk, A. (2019). Patterned ground above the alpine timberline in the High Sudetes, Central Europe. Journal of Maps, 15(2), 563–569. https://doi.org/10.1080/17445647.2019.1636890
  • Kunz, J., & Kneisel, C. (2021). Three-dimensional investigation of an open- and a closed-system Pingo in northwestern Canada. Permafrost and Periglacial Processes, 32(4), 541–557. https://doi.org/10.1002/ppp.2115
  • Kurter, A. (1991). Glaciers of Middle East and Africa Glaciers of Turkey. In R. S. Williams & J. G. Ferrigno, Eds., Satellite Image Atlas of the World. 1–30. USGS Professional Paper. 1386. 1.
  • Kurtuluş, C., Doğan, B., Sertçelik, F., Canbay, M., & Küçük, H. (2009). Determination of the tectonic evolution of the Edremit Gulf based on seismic reflection studies. Marine Geophysical Research, 30(2), 121–134. https://doi.org/10.1007/s11001-009-9072-2
  • Kutiel, H., & Türkeş, M. (2005). New evidence about the role of the North Sea-Caspian Pattern (NCP) on the temperature and precipitation regimes in continental central Turkey. Geografiska Annaler: Series A, Physical Geography, 87(4), 501–513. https://doi.org/10.1111/j.0435-3676.2005.00274.x
  • Levy, J. S., Marchant, D. R., & Head, J. W. (2010). Thermal contraction crack polygons on Mars: A synthesis from HIRISE, Phoenix, and terrestrial analog studies. Icarus, 206(1), 229–252. https://doi.org/10.1016/j.icarus.2009.09.005
  • Łozinski, W. (1909). Über die mechanische verwitterung der sandstein im gemässtigen Klima. Bulletin international de l’académie des sceinces et des lettres de Cracovie, classe des sciences mathématiques et naturelles, 1, 1–25.
  • Lytkin, V. (2020). Inventory and distribution of rock glaciers in Northeastern Yakutia. Land, 9(10), 384. https://doi.org/10.3390/land9100384
  • Mallants, D., Mohanty, B. P., Jacques, D., & Feyen, J. (1996). Spatial variability of hydraulic properties in a multi-layered soil profile. Soil Science, 161(3), 167–181. https://doi.org/10.1097/00010694-199603000-00003
  • Martin, H. E., & Whalley, W. B. (1987). Rock glaciers, Part 1: Rock glacier morphology: Classification and distribution. Progress in Physical Geography, 11(2), 260–282. https://doi.org/10.1177/030913338701100205
  • Mayer, H., & Aksoy, H. (1998). Turkey Forests (Wälder der Türkei). Turkey Republic Ministry of Forestry, Western Black Sea Forestry Research Institute. In . Vol. 2.
  • Mulla, D. J., & Mc Bratney, A. B. (2000). Soil Spatial Variability (pp. 321–352). Handbook of Soil Science CRS Press.
  • Muller, S. W. (1947). Permafrost or Permanently Frozen Ground and Related Engineering Problems. U.S. Geological Survey, U.S. Army, Office of the Chief of Engineers, Strategic Engineering Study (pp. 62). Ann Arbor, J.W. Edwards.
  • Nelson, D. W., & Sommers, L. E. (1982). Total Carbon, Organic Carbon and Organic Matter. In L. A. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of Soil Analysis, Part 2. Chemical and Microbiological Methods (2 nd ed., pp. 539–579). American Society of Agronomy.
  • Okay, A. I., & Satır, M. (2000). Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geological Magazine, 137(5), 495–516. https://doi.org/10.1017/S0016756800004532
  • Oliva, M., Serrano, E., Gomez-Ortiz, A., Gonzalez-Amuchastequi, M., Nieuwendan, A., Palacios, D., Perez-Alberti, A., Pellitero-Ondicol, R., Ruiz-Fernandez, J., Valcarcel, M., Vieira, G., & Antoniades, D. (2016). Spatial and temporal variability of periglaciation of the Iberian Peninsula. Quaternary Science Reviews, 137(2016), 176–199. https://doi.org/10.1016/j.quascirev.2016.02.017
  • Oliva, M., Zebre, M., Guglielmin, M., Hughes, P., Çiner, A., Vieira, G., Bodin, X., Andres, N., Colucci, R. R., Garcia-Hernandez, C., Mora, C., Nofre, J., Palacios, D., Perez-Alberti, A., Ribolini, A., Ruiz-Fernandez, J., Sarıkaya, M. A., Serrano, E., Urdea, P., & Yıldırım, C. (2018). Permafrost conditions in the Mediterranean region since the Last Glaciation. Earth-Science Reviews, 185(2018), 397–436. https://doi.org/10.1016/j.earscirev.2018.06.018
  • Oliva, M., Sarıkaya, M. A., & Hughes, P. (2020). Holocene and earlier glaciations in the Mediterranean Mountains. Mediterranean Geoscience Reviews, 2(1), 1–4. https://doi.org/10.1007/s42990-020-00025–6
  • Palacios, D., de Andres, N., & Luengo, E. (2003). Distribution and effectiveness of nivation in Mediterranean mountains: Penalara (Spain). Geomorphology, 54(3–4), 157–178. https://doi.org/10.1016/S0169-555X(02)00340-9
  • Palgrave, W. G. (1872). Vestiges of the glacial period in northeastern Anatolia. Nature, 5(127), 444–445. https://doi.org/10.1038/005444d0
  • Planhol, X. D., & Bilgin, T. (1961). Pleistocene and actual glaciation with periglacial landforms on Karagöl Mass. Review of the Geographical Institute University of Istanbul, 12, 127–146.
  • Potter, N. (1972). Ice cored rock glaciers, Galena Creek northern Absoraka Mountains, Wyoming. Geological Society of America Bulletin, 83(10), 3025–3058.
  • Potter, N., Steig, E. J., Clark, D. H., Speece, M. A., Clark, G. M., & Updike, A. B. (1998). Galena Creek rock glacier revisited-new observations on an old controversy. Geografiska Annaler, 80(3–4), 251–265. https://doi.org/10.1111/j.0435-3676.1998.00041.x
  • Ribolini, A., & Fabre, D. (2006). Permafrost existence in rock glaciers of the Argentera Massif, Maritime Alps, Italy. Permafrost and Periglacial Processes, 17(1), 49–63. https://doi.org/10.1002/ppp.548
  • Sarıkaya, M. A. (2009). Late Quaternary Glaciation and Paleoclimate of Turkey Inferred from Cosmogenic 36Cl Dating of Moraines and Glacier Modeling. Ph.D. Thesis, University of Arizona.
  • Sarıkaya, M. A. (2012). Recession of the ice cap on Mount Ağrı (Ararat), Turkey, from 1976 to 2011 and its climatic significance. Journal of Asian Earth Sciences, 46(2012), 190–194. https://doi.org/10.1016/j.jseaes.2011.12.009
  • Sarıkaya, M. A., & Tekeli, A. E. 2014. Satellite Inventory of Glaciers in Turkey. Global Land Ice Measurements from Space. In J. S. Kargel, G. J. Leonard, M. P. Bishop, A. Kaab, & B. Raup Eds., Praxis-Springer (Publisher) Springer, Berlin, Heidelberg. (pp. 465–480, 876). https://doi.org/10.1007/978-3-540-79818-7_21.
  • Sarıkaya, M. A., & Çiner, A. (2015). Late Pleistocene glaciations and paleoclimate of Turkey. Bulletin of the Mineral Research and Exploration, 151, 107–127. https://doi.org/10.19111/bmre.35245
  • Sarıkaya, M. A., & Çiner, A. (2019). Ice in Paradise: Glacial Heritage Landscapes of Anatolia. In C. Kuzucuoğlu, A. Çiner, & N. Kazancı (Eds.), Landscapes and Landforms of Turkey, World Geomorphological Landscapes series (pp. 397–411). Springer Nature Switzerland AG (Publisher), Switzerland. https://doi.org/10.1007/978-3-030-03515-0_1
  • Satıl, F., & Dirmenci, T. (2012). Endemic plants and danger categories of Kaz Mountains. In: International Participation III. National Symposium of Kaz Mountains, Proceedings Book: s.23–27. 24-26 May 2012, Edremit-Güre, Balıkesir.
  • Schaetzl, R., & Anderson, S. (2005). Soils: Genesis and geomorphology (833p). Cambridge University Press.
  • Schweizer, G. (1975). Untersuchungen zur Physiogeographie von Ostanatolien und Nordwestiran. Tübinger Geographische Studien, 60(9), 145.
  • Şengör, A., Tüysüz, O., İmren, C., Sakınç, M., Eyidoğan, H., Görür, N., Le Pichon, X., & Rangin, C. (2005). The North Anatolian Fault: A new look. Annual Review of Earth and Planetary Sciences, 33(1), 37–112. https://doi.org/10.1146/annurev.earth.32.101802.120415
  • Shroder, J. F., Bishop, M. P., Copland, L., & Sloan, V. F. (2000). Debris-covered glaciers and rock glaciers in the Nanga Parbat Himalaya, Pakistan. Geografiska Annaler, 82A(1), 17–31. https://doi.org/10.1111/j.0435-3676.2000.00108.x
  • Soil Survey Laboratory. 1992. Procedures for collecting soil samples and methods of analysis for soil survey. Soil Surv. Invest. Rep. Vol. I. U.S. Gov. Print. Office
  • Soil Survey Staff. (1993). Soil survey manuel. USDA Handbook. 18.
  • Soil Survey Staff. (2014). Keys to Soil Taxonomy. United States Department of Agriculture Natural Resources Conservation Service Washington D.C. NRCS-USDA, 1-372p.
  • Sommer, M., Gerke, H. H., & Deumlich, D. (2008). Modelling soil landscape genesis-A “time split” approach for hummocky agricultural landscapes. Geoderma, 145(3–4), 480–493. https://doi.org/10.1016/j.geoderma.2008.01.012
  • Spreitzer, H. (1958). Frührezente und rezente Hochstande der Gletscher des Kilikischen Ala Dag im Taurus. Geographische Forschungen, 60, Innsbruck.
  • Süzen, M., Toprak, V., & Rojay, B. (2006). High altitude Plio-Quaternary fluvial deposits and their implication on the tilt of a horst, western Anatolia, Turkey. Geomorphology, 74(1–4), 80–99. https://doi.org/10.1016/j.geomorph.2005.07.012
  • Taymaz, T., Jackson, J., & McKenzie, D. (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106(2), 433–490. https://doi.org/10.1111/j.1365-246X.1991.tb03906.x
  • Taymaz, T., Yılmaz, Y., & Dilek, Yılmaz. (2007). The geodynamics of the Aegean and Anatolia: Introduction. In T. Taymaz, Y. Yılmaz, & Y. Dilek (Eds.), The geodynamics of the aegean and anatolia: Geological society of London (Vol. 291, pp. 1–16). Special Publication. https://doi.org/10.1144/SP291.1
  • Thorn, C. E. (1976). A model of stony earth circle development, Schefferville, Quebec. Association of American Geographers, Proceedings, Vol. 8, pp.19–23.
  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94. https://doi.org/10.2307/210739
  • Thornthwaite, C. W., & Mather, J. R. (1957). Instructions and tables for computing potential evapotranspiration and the water balance. Publications in Climatology, Laboratory of Climatology, X(3), 1-66. https://www.wrc.udel.edu/wp-content/publications/ThornthwaiteandMather1957Instructions_Tables_ComputingPotentialEvapotranspiration_Water%20Balance.pdf
  • Treml, V., Křížek, M., & Engel, Z. (2010). Classification of patterned ground based on morphometry and site characteristics: A case study from the High Sudetes, Central Europe. Permafrost and Periglacial Processes, 21(1), 67–77. https://doi.org/10.1002/ppp.671
  • Tricart, J. (1968). Periglacial Landscapes. In R. W. Fairbridge (Ed.), Encyclopedia of geomorphology. Reinhold. https://doi.org/10.1007/3-540-31-060-6_279
  • Tunç, İ. O. (2014). Geochronology and Tectono-stratigraphic Characteristic of the Pre-Cenozoic Rock Assemblages of the Biga Peninsula (NW Anatolia-Turkey). Çanakkale Onsekiz Mart University, Ph.D. Thesis, 235 p.
  • Tunçay, T., & Dengiz, O. (2016). Chemical weathering rates and geochemical-mineralogical characteristics of soils developed on heterogeneous parent material and toposequence. Carpathian Journal of Earth and Environmental Sciences, 11, 583–598.
  • Tunçay, T., & Dengiz, O. (2020). The roles of parent material and toposequence on geochemical characteristics and pedogenic iron oxides of soils. Indian Journal of Geo Marine Science, 49(4), 622–623.
  • Türkeş, M. (2010). Climatology and Meteorology. + XXII pp. İstanbul. First Edition. Kriter Publisher - Publication No. 63, Physical Geography. 650
  • Türkeş, M., & Öztürk, M. Z. (2011). Garland and circle landforms on Uludağ. Turkish Journal of Geographical Sciences, 9(2), 239–257. https://doi.org/10.1501/Cogbil_0000000127
  • Türkeş, M., & Altan, G. (2012). Analysis of forest fires with drought index and their relationship with climate changes in Kaz Mountain Region. In: International Participation III. National Symposium of Kaz Mountains, Proceedings Book: s.83–96. 24–26 May, Edremit-Güre, Balıkesir.
  • Türkeş, M. 2015. Biogeography: Approach of paleogeography and ecology 3. Kriter Publishing, Series of Physical Geography.
  • Türkeş, M. (2020). Climate and Drought in Turkey. In N. B. Harmancıoğlu & D. Altınbilek (Eds.), Water resources of Turkey, world water resources 2 (pp. 85–125). Springer.
  • Unep. (1993). World atlas of desertification. The United Nations Environment Programme (UNEP).
  • Uxa, T., Mida, P., & Křížek, M. (2017). Effect of climate on morphology and development of sorted circles and polygons. Permafrost and Periglacial Processes, 28(4), 663–674. https://doi.org/10.1002/ppp.1949
  • Uxa, T., & Mida, P. (2017). Rock glaciers in the Western and High Tatra Mountains, Western Carpathians. Journal of Maps, 13(2), 844–857. https://doi.org/10.1080/17445647.2017.1378136
  • Van Everdingen, R. O. 2005. International permafrost association multi-language glossary of permafrost and related ground-ice terms. Revised version of the 1998 version. International Permafrost Association, Terminology Working Group. Compiled. Edited by, 1N4.
  • Vandenberghe, J., Renssen, H., Roche, D. M., Goose, H., Velichko, A. A., Gurbanov, A., & Levavasseur, G. (2012). Eurasian permafrost instability constrained by reduced sea-ice cover. Quaternary Science Reviews, 34, 16–23. https://doi.org/10.1016/j.quascirev.2011.12.001
  • Wahrhaftig, C., & Cox, A. (1959). Rock glaciers in the Alaska Range. Geological Society of America Bulletin, 70(4), 383–436.
  • Washburn, A. L. (1979). Geocryology: A survey of periglacial processes and environments (pp. 406). Edward Arnold, London. https://doi.org/10.1177/030913338100500209
  • Washburn, A. L. (1980). Permafrost features as evidence of climatic change. Earth Science Reviews, 15(4), 327–402. https://doi.org/10.1016/0012-8252(80)90114-2
  • Washburn, A. L. (1997). Plugs and plug circles: A basic form of patterned ground, Cornwallis Island, Arctic Canada-origin and implications. Geological Society of America Bulletin, 190, 87. https://doi.org/10.1130/0-8137-1190-8.1
  • Whalley, W. B., & Martin, H. E. (1992). Rock glaciers: II models and mechanism. Progress in Physical Geography, 16(2), 127–186. https://doi.org/10.1177/030913339201600201
  • Whalley, W. B., & Palmer, C. F. (1998). A glacial interpretation for the origin and formation of the Marinet Rock Glacier, Alpes Maritimes, France. Geografiska Annaler, 80(3–4), 221–236. https://doi.org/10.1111/j.0435-3676.1998.00039.x
  • Whittig, L. D., & Allardice, W. R. (1986). X-ray Diffraction Techniques. In A. Klute, Ed., Methods of soil analysis, part 1. Physical and mineralogical methods. 2nd eds (pp. 55–86). ASA publication 9. https://doi.org/10.2136/sssabookser5.1.2ed.c12
  • Wilding, L. P. 1985. Spatial variability: It’s documentation, accommodation and implication to soil surveys. In D. R. Nielsen & J. Bouma Eds., Soil Spatial Variability, 166–194. PUDOC. https://doi.org/10.12691/env-3-1–4.
  • Williams, P. J. (1961). Climatic factors controlling the distribution of certain frozen ground phenomena. Geografiska Annaler, 43, 339–347. https://doi.org/10.1080/20014422.1961.11880994
  • Willmott, C. J. (1977). Watbug: A fortran IV algorithm for calculating the climatic water budget. University of Delaware.
  • Wolter, J., Lantuit, H., Wetterich, S., Rethemeyer, J., & Fritz, M. (2018). Climatic, geomorphologic and hydrologic perturbations as drivers for mid-to late Holocene development of ice-wedge polygons in the western Canadian Arctic. Permafrost and Periglacial Processes, 29(3), 1–18. https://doi.org/10.1002/ppp.1977
  • Yavaşlı, D. D., Tucker, C. J., & Melocik, K. A. (2015). Change in the glacier extent in Turkey during the Landsat Era. Remote Sensing of Environment, 163, 32–41. https://doi.org/10.1016/j.rse.2015.03.002
  • Yeşilyurt, S., Doğan, U., & Akçar, N. (2018). Traces of Late Quaternary glaciations in the Narlıca Valley, Kavuşşahap Mountains. Turkish Geographical Review, 70, 99–108. https://doi.org/10.17211/tcd.415232
  • Yılmaz, Y., Gökaşan, E., & Erbay, A. E. (2010). Morphotectonic development of the Marmara region. Tectonophysics, 488(1–4), 51–70. https://doi.org/10.1016/j.tecto.2009.05.012
  • Zahno, C., Akçar, N., Yavuz, V., Kubik, P. W., & Schlüchter, C. (2010). Chronology of Late Pleistocene glacier variations at the Uludağ Mountain, NW Turkey. Quaternary Science Reviews, 29(9–10), 1173–1187. https://doi.org/10.1016/j.quascirev.2010.01.012
  • Zganiacz, J. P., & Dzieduszynska, D. A. (2017). Palaeoenvironmental proxies for permafrost presence during the Younger Dryas, Central Poland. Permafrost and Periglacial Processes, 28(4), 726–740. https://doi.org/10.1002/ppp.1956
  • Zhao, L., Zou, D., Hu, G., Du, E., Pang, Q., Xiao, Y., Li, R., Sheng, Y., Wu, X., Sun, Z., Wang, L., Wang, C., Ma, L., & Zhou, H. (2020). Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) plateau. Permafrost and Periglacial Processes, 31(3), 396–405. https://doi.org/10.1002/ppp.2056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.