74
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of the tributary channel and water catchment area on rinnenkarren development (Totes Gebirge, Austria)

ORCID Icon
Pages 478-502 | Received 15 Apr 2022, Accepted 18 Sep 2022, Published online: 05 Oct 2022

References

  • Bates, P. D., Lane, S. N., & Ferguson, R. I. (2005). Computational fluid dynamics, applications in environmental hydraulics. John Wiley & Sons Ltd. https://doi.org/10.1002/0470015195
  • Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2002). Transport phenomena (Second ed.), John Wiley & Sons, Inc.
  • Blazek, J. (2015). Computational fluid dynamics: Principles and applications (Third ed.), Butterworth-Heinemann, Elsevier. https://doi.org/10.1016/C2013-0-19038-1
  • Bögli, A. (1960). Kalklösung und Karrenbildung. Zeitschrift für Geomorphologie, Vol. Suppl. 2. ( an English translation by E. Werner was published in Cave Geology, 1(1), pp. 3-28, 1975). Schweizerbart Science Publishers.
  • Bögli, A. (1976). Die wichtigsten Karrenformen der Kalkalpen. Karst processes and relevants landforms. ISU Commission on Karst Denudation.
  • Chen, Y., DiBiase, R. A., McCarroll, N., & Liu, X. (2019). Quantifying flow resistance in mountain streams using computational fluid dynamics modeling over structure-from-motion photogrammetry-derived microtopography. Earth Surface Processes and Landforms, 44(10), 1973–1987. https://doi.org/10.1002/esp.4624
  • Cooper, M. P., & Covington, M. D. (2020). Modeling cave cross-section evolution including sediment transport and paragenesis. Earth Surface Processes and Landforms, 45(11), 2588–2602. https://doi.org/10.1002/esp.4915
  • Covington, M. D. (2014). Calcite dissolution under turbulent flow conditions: A remaining conundrum. Acta Carsologica, 43(1), 195–202. https://doi.org/10.3986/ac.v43i1.628
  • Deák, G., Samu, S., Péntek, K., Mitre, Z., & Veress, M. (2012). Vízáramlási modellkísérletek vályúrendszereken. Karsztfejlődés, XVII, 155–163. http://epa.oszk.hu/03100/03192/00017/pdf/EPA03192_karsztfejlodes_2012_17_155-163.pdf
  • Dreybrodt, W. (1988). Processes in Karst systems. Physics, chemistry, and geology. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-83352-6
  • Dreybrodt, W., Gabrovšek, F., & Romanov, D. (2005). Processes of speleogenesis: A modeling approach. ZRC Publishing, Karst Research Institute at ZRC SAZU.
  • Ducros, F., Franck, N., & Poinsot, T. (1998) Wall-adapting local eddy-viscosity models for simulations in complex geometries. In: M. J. Baines (Ed.) Proceedings of 6th ICFD Conference on Numerical Methods for Fluid Dynamics, pp. 293–299.
  • Eckert, M. (1898). Die Karren oder Schratten. Petr. Mitteilangen, 69–71.
  • Emmett, W. W. (1970) The hydraulics of overland flow on hillslopes. U.S. Geological Survey. Professional Paper, 662-7. pp. 1–68. U.S. Govt. Print. Off.
  • Ford, D. C., & Williams, P. W. (1989). Karst geomorphology and hydrology. Unwin Hyman.
  • Ford, D. C., & Williams, P. W. (2007). Karst hydrogeology and geomorphology. John Wiley & Sons, Chichester. https://doi.org/10.1002/9781118684986
  • Haserodt, K. (1965). Untersuchungen zur Höhen — Und Altersgliederung der Karstformen in den Nördlichen Kalkalpen. Münch. Geogr. Helfe, 27, 1–114.
  • Holman, D. M., Brionnaud, R. M., & Abiza, Z. (2012). Solution to industry benchmark problems with the Lattice-Boltzmann code XFlow. In J. E. Et.al (Ed.), European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) (pp. 22). Vienna, Austria.
  • Hutchinson, D. W. (1996). Runnels, rinnenkarren and mäanderkarren form, classification and relationship. In J. J. Fornós & A. Ginés (Eds.), Karren Landforms (pp. 209–223). Universitat de les Illes Balears.
  • Jennings, J. N. (1985). Karst geomorphology. Basil Blackwell.
  • Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593–1600.
  • Jiyuan, T., Guan-Heng, Y., & Chaoqun, L. (2013). Computational fluid dynamics - A practical approach (Second ed.) Elsevier Ltd. https://doi.org/10.1016/C2010-0-67980-6
  • Katodopes, N. D. (2019). Free-surface flow. Environmental fluid mechanics. Butterworth-Heinemann. https://doi.org/10.1016/C2016-0-04780-0
  • Kozma, K., & Mitre, Z. (2012). Variations of the type A channels in Totes Gebirge. Zeitschrift Für Geomorphologie Supplement, 56(2), 37–46. https://doi.org/10.1127/0372-8854/2012/S-00084
  • Louis, H. (1968). Allgemeine Geomorphologie. Walter de Gruyter.
  • Perne, M., Covington, M. D., & Myre, J. (2014) Modeling of bedrock channel and cave evolution using computational fluid dynamics. 2014 GSA Annual Meeting in Vancouver, British Columbia, 20 p.
  • Piller, W. (1976). Fazies und Lithostratigraphie des gebankten Dachsteinkalkes (Obertrias) am Nordrand des Toten Gebirges (S Grünau/ Almtal, Oberösterreich). Mitt. Ges. Geol. Bergbaustud. Österr, 23, 113–152.
  • Plan, L., Filipponi, M., Behm, M., Seebacher, M., & Jeatter, P. (2009). Constraints on alpine speleogenesis from cave morphology – A case study from the eastern Totes Gebirge (Northern Calcareous Alps, Austria). Geomorphology, 106(1–2), 118–129. https://doi.org/10.1016/j.geomorph.2008.09.011
  • Sauro, U., & Perna, G. (1978) Atlante delle microforme di dissoluzione carsica superficiale del Trentino e del Veneto. Memorie del Museo Tridentino di Scienze Naturali. 22. Museo Tridentino di scienze naturali, Trentino.
  • Schöllnberger, W. (1973). Zur Verzahnung von Dachsteinkalk-Fazies und Hallstätter Fazies am Südrand des Toten Gebirges (Nördliche Kalkalpen, Österreich). Mitt. Ges. Geol. Bergbaustud. Österr, 22, 95–153.
  • Shih, T. H., Povinelli, L. A., Liu, N. S., Potapczuk, M. G., & Lumley, J. L. (1999). A generalized wall function (Vol. 16). National Aeronautics and Space Administration Glenn Research Center. NASA TM-1999-209398 ICOMP-99-08.
  • Smyth, T. A. G., Hesp, P. A., Walker, I. J., Wasklewicz, T., Gares, P. A., & Smith, A. B. (2019). Topographic change and numerically modelled near surface wind flow in a bowl blowout. Earth Surface Processes and Landforms, 44(10), 1988–1999. https://doi.org/10.1002/esp.4625
  • Sweeting, M. M. (1955). Landforms in North-West Country Clare, Ireland. Transactions of the Institute of British Geographers, 21, 218–249.
  • Sweeting, M. M. (1973). Karst landforms. Columbia University Press.
  • Szunyogh, G. (1995). Karrvályúk vízszállító-képességének elméleti meghatározása. Karsztfejlődés, I, 133–144. http://epa.oszk.hu/03100/03192/00001/pdf/EPA03192_karsztfejlodes_1995_1_133-144.pdf
  • Szunyogh, G. (2005). A theoretical approach to establish the duration of denudation on limestone surface without soil cover. Acta Carsologica, 34(1), 9–23. https://doi.org/10.3986/ac.v34i1.276
  • Trudgill, S. T. (1985). Limestone geomorphology. Longman.
  • Veress, M. (2009). Rinnenkarren. In A. Gines, M. Knez, T. Slabe, & W. Dreybrodt Eds., Karst rock features, Karren sculpturing Zalozba ZRC. Carsologica, 9. Ljubljana, Slovènia (151–159). Institut za raziskovanje krasa ZRC SAZU.
  • Veress, M. (2010). Karst environments – Karren formation in high mountains. Springer. https://doi.org/10.1007/978-90-481-3550-9
  • Veress, M. (2016). Covered Karst. Springer. https://doi.org/10.1007/978-94-017-7518-2
  • Veress, M. (2019). The KARREN and KARREN formation of bare slopes. Earth-Science Reviews, 188, 272–290. https://doi.org/10.1016/j.earscirev.2018.11.006
  • Veress, M. (2020). Karst types and their karstification. Journal of Earth Science, 31(3), 621–634. https://doi.org/10.1007/s12583-020-1306-x
  • Veress, M., Deák, G., & Czöpek, I. (2006a). Növényfolt alatti és növényzetmentes lejtők karrosodásának összehasonlítása Totes gebirgei példák alapján. Karsztfejlődés, XI, 81–103. https://epa.oszk.hu/03100/03192/00011/pdf/EPA03192_karsztfejlodes_2006_11_081-103.pdf
  • Veress, M., Péntek, K., Czöpek, I., Zentai, Z., Deák, G., & Mitre, Z. (2007) Adatok a Totes Gebirgei lejtők karrosodásához. Karsztfejlődés XII. , pp. 137–152. https://epa.oszk.hu/03100/03192/00012/pdf/EPA03192_karsztfejlodes_2007_12_137-152.pdf
  • Veress, M., Péntek, K., Zentai, Z., & Mitre, Z. (2010). Vízágas vályúkarrok fejlődési típusai. Karsztfejlődés, XV, 61–84. http://epa.oszk.hu/03100/03192/00015/pdf/EPA03192_karsztfejlodes_2010_15_061-084.pdf
  • Veress, M., Samu, S., & Mitre, Z. (2015a). The effect of slope angle on the development of type A and type B channels of rinnenkarren with field and laboratory measurements. Geomorphology, 228, 60–70. https://doi.org/10.1016/j.geomorph.2014.08.014
  • Veress, M., Samu, S., Széles, G., Döbröntei, L., Zentai, Z., & Mitre, Z. (2015b). The development of rinnenkarren systems. Karsztfejlődés, XX, 101–124. http://epa.oszk.hu/03100/03192/00020/pdf/EPA03192_karsztfejlodes_2015_20_101-124.pdf
  • Veress, M., Telbisz, T., Tóth, G., Lóczy, D., Ruban, D. A., & Gutak, J. M. (2019). Glaciokarsts. Springer. https://doi.org/10.1007/978-3-319-97292-3
  • Veress, M., Tóth, G., Zentai, Z., & Kovács, G. (2006b) A magashegységi karsztosodás mértékének és minőségének alakulása a különböző növényövekben. Karszt és Barlang 2002-2003. pp. 39–48. Magyar Karszt- és Barlangkutató Társulat.
  • Veress, M., Zentai, Z., Mitre, Z., Széles, G., & Döbröntei, L. (2016). Width changes of rinnenkarren. Karsztfejlődés, XXI, 65–73. http://epa.oszk.hu/03100/03192/00021/pdf/EPA03192_karsztfejlodes_2016_21_065-073.pdf
  • Veress, M., Zentai, Z., Péntek, K., Eőry, M., & Mitre, Z. (2009). Vályúfejlődés csupasz lejtőkön. Karsztfejlődés, 14, 139–159. http://epa.oszk.hu/03100/03192/00014/pdf/EPA03192_karsztfejlodes_2009_14_139-159.pdf
  • Veress, M., Zentai, Z., Péntek, K., & Mitre, Z. (2011). Rinnenkarr rendszerek fejlődése. Karsztfejlődés, XVI, 71–85. http://epa.oszk.hu/03100/03192/00016/pdf/EPA03192_karsztfejlodes_2011_16_071-085.pdf
  • Veress, M., Zentai, Z., Péntek, K., Mitre, Z., Deák, G., & Samu, S. (2012). Vályúrendszerek fővályúinak fejlődése. Karsztfejlődés, XVII, 131–154. http://epa.oszk.hu/03100/03192/00017/pdf/EPA03192_karsztfejlodes_2012_17_131-154.pdf
  • Veress, M., Zentai, Z., Péntek, K., Mitre, Z., Deák, G., & Samu, S. (2013). Flow dynamics and shape of rinnenkarren systems. Geomorphology, 198, 115–127. https://doi.org/10.1016/j.geomorph.2013.05.019
  • Volker, J. (2016). Finite element methods for incompressible flow problems. Springer International Publishing. https://doi.org/10.1007/978-3-319-45750-5
  • Wagner, G. (1950). Rund um Hochifen Gottesackergebiet). Hohenlohesche Buchhandlung (F. Rau).
  • White, W. B. (1988). Geomorphology and hydrology of Karst terrains. Oxford University Press.
  • White, F. M. (2016). Fluid mechanics. (Eighth ed). McGraw-Hill Education.
  • Williams, P. W. (2008). The role of the epikarst in karst and cave hydrogeology: A review. International Journal of Speleology, 37(1), 1–10. https://doi.org/10.5038/1827-806X.37.1.1
  • Zhao, Y., Liao, W., & Lei, X. (2019). Hydrological simulation for Karst mountain areas: A case study of Central Guizhou Province. Water, 11(5), 991. https://doi.org/10.3390/w11050991

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.