184
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

The relative imprint of forming factors on soil characteristics in a recently deglaciated area: concerns about chronosequences approach

ORCID Icon, , , &
Pages 678-709 | Received 15 Feb 2022, Accepted 12 Oct 2022, Published online: 02 Nov 2022

References

  • Avery, B. W., & Bascomb, C. L. (Eds.). (1982). Soil Survey Laboratory Methods. Lawes Agricultural Trust.
  • Ballantyne, C. K. (2002). Paraglacial geomorphology. Quaternary Science Reviews, 21(18–19), 1935–2017. https://doi.org/10.1016/S0277-3791(02)00005-7
  • Baroni, C., Gentili, R., & Armiraglio, S. (2013). Vegetation analysis on composite debris cones. dating torrential processes on fans and cones. Springer.
  • Berger, A., Engi, M., Erne-Schmid, S., Glotzbach, C., Spiegel, C., de Goede, R., & Herwegh, M. (2020). The relation between peak metamorphic temperatures and subsequent cooling during continent-continent collision (Western Central Alps, Switzerland). Swiss Journal of Geosciences, 113(1), 4. https://doi.org/10.1186/s00015-020-00356-4
  • Bernasconi, S. M., Bauder, A., Bourdon, B., Brunner, I., Bünemann, E., Christl, I., Derungs, N., Edwards, P., Farinotti, D., Frey, B., Frossard, E., Furrer, G., Gierga, M., Göransson, H., Gülland, K., Hagedorn, F., Hajdas, I., Hindshaw, R., Ivy-Ochs, S., … Zumsteg, A. (2011). Chemical and biological gradients along the Damma glacier soil chronosequence (Switzerland). Vadose Zone Journal, 10(3), 867–883. https://doi.org/10.2136/vzj2010.0129
  • Bigioggero, B., Colombo, A., Cavallo, A., Aldighieri, B., & Tunesi, A. (2007). Geological-structural sketch-map of the Ossola-Simplon area. Snam Rete Gas Ed. 1 map; 1:50.000 scale.
  • Birkeland, P. W., Burke, R. M., & Shroba, R. R. (1987). Holocene alpine soils in gneissic cirque deposits, Colorado Front Range. Soil Chronosequences in the Western United States. US Geological Survey Bulletin 1590-E.
  • Birkeland, P. W., Shroba, R. R., Burns, S. F., Price, A. B., & Tonkin, P. J. (2003). Integrating soils and geomorphology in mountains—an example from the Front Range of Colorado. Geomorphology, 55(1–4), 329–344. https://doi.org/10.1016/S0169-555X(03)00148-X
  • Bollati, I. M., D’Agata, C., & Pelfini, M. (2018). Changing Alpine glacier forelands: Open-air laboratories for geomorphic variations assessment. In: M. Micu & L. Comanescu eds. (a cura di) Proceedings of the 34th Romanian Symposium on Geomorphology and of the 19th Joint Geomorphological Meeting. Asociatia Geomorfologilor din Romania; pp. 20–23.
  • Bollati, I. M., Masseroli, A., Mortara, G., Pelfini, M., & Trombino, L. (2019). Alpine gullies system evolution: Erosion drivers and control factors. Two examples from the western Italian Alps. Geomorphology, 327, 248–263. https://doi.org/10.1016/j.geomorph.2018.10.025
  • Bollati, I., Pellegrini, M., Reynard, E., & Pelfini, M. (2017). Water driven processes and landforms evolution rates in mountain geomorphosites: Examples from Swiss Alps. Catena, 158, 321–339. https://doi.org/10.1016/j.catena.2017.07.013
  • Burga, C. A., Krüsi, B., Egli, M., Wernli, M., Elsener, S., Ziefle, M., Fischer, T., & Mavris, C. (2010). Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): Straight forward or chaotic? Flora-Morphology, Distribution, Functional Ecology of Plants, 205(9), 561–576. https://doi.org/10.1016/j.flora.2009.10.001
  • Camerano, P., Gottero, F., Terzuolo, P. G., & Varese, P. (2008). Tipi forestali del Piemonte. IPLA S.p.A. Regione Piemonte.
  • Carrivick, J. L., & Heckmann, T. (2017). Short-term geomorphological evolution of proglacial systems. Geomorphology, 287, 3–28.
  • Colombo, N., Giaccone, E., Paro, L., Buffa, G., & Fratianni, S. (2016). The recent transition from glacial to periglacial environment in a high altitude alpine basin (Sabbione Basin, North-Western Italian Alps). Preliminary outcomes from a multidisciplinary approach. Geogr. Fis. Dinam. Quat, 39, 21–36.
  • Cossart, E., & Fort, M. (2008). Sediment release and storage in early deglaciated areas: Towards an application of the exhaustion model from the case of Massif des Écrins (French Alps) since the Little Ice Age. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, 62(2), 115–131. https://doi.org/10.1080/00291950802095145
  • Crosa Lenz, P., & Frangioni, G. (2005). Alpe Veglia. Escursioni, storia e natura nel Parco Naturale. Grossi Editore.
  • D’Agata, C., Diolaiuti, G., Maragno, D., Smiraglia, C., & Pelfini, M. (2020). Climate change effects on landscape and environment in glacierized Alpine areas: Retreating glaciers and enlarging forelands in the Bernina group (Italy) in the period 1954–2007. Geology, Ecology, and Landscapes, 4(1), 2020. https://doi.org/10.1080/24749508.2019.1585658
  • D’Amico, M. E., Freppaz, M., Filippa, G., & Zanini, E. (2014). Vegetation influence on soil formation rate in a proglacial chronosequence (Lys Glacier, NW Italian Alps). Catena, 113, 122–137. https://doi.org/10.1016/j.catena.2013.10.001
  • D’Amico, M. E., Freppaz, M., Leonelli, G., Bonifacio, E., & Zanini, E. (2015). Early stages of soil development on serpentinite: The proglacial area of the Verra Grande Glacier, Western Italian Alps. Journal of Soils and Sediments, 15(6), 1292–1310. https://doi.org/10.1007/s11368-014-0893-5
  • Dümig, A., Smittenberg, R., & Kögel-Knaber, I. (2011). Concurrent evolution of organic and mineral components after retreat of the Damma glacier, Switzerland. Geoderma, 163(1–2), 83–94. https://doi.org/10.1016/j.geoderma.2011.04.006
  • Egli, M., Dahms, D., & Norton, K. (2014). Soil formation rates on silicate parent material in alpine environments: Different approaches–different results? Geoderma, 213, 320–333. https://doi.org/10.1016/j.geoderma.2013.08.016
  • Egli, M., Fitze, P., & Mirabella, A. (2001). Weathering and evolution of soils formed on granitic, glacial deposits: Results from chronosequences of Swiss alpine environments. Catena, 45(1), 19–47. https://doi.org/10.1016/S0341-8162(01)00138-2
  • Egli, M., Mavris, C., Mirabella, A., & Giaccai, D. (2010). Soil organic matter formation along a chronosequence in the Morteratsch proglacial area (Upper Engadine, Switzerland). Catena, 82(2), 61–69. https://doi.org/10.1016/j.catena.2010.05.001
  • Egli, M., Mirabella, A., & Fitze, P. (2003b). Formation rates of smectite derived from two Holocene chronosequences in the Swiss Alps. Geoderma, 117(1–2), 81–98. https://doi.org/10.1016/S0016-7061(03)00136-8
  • Egli, M., Mirabella, A., Sartori, G., & Fitze, P. (2003a). Weathering rates as a function of climate: Results from a climosequence of the Val Genova (Trentino, Italian Alps). Geoderma, 111(1–2), 99–121. https://doi.org/10.1016/S0016-7061(02)00256-2
  • Egli, M., & Poulenard, J. (2017). Soils of mountainous landscapes. International Encyclopedia of Geography: People, the Earth, Environment and Technology, pp. 1–10
  • Egli, M., Wernli, M., Kneisel, C., & Haeberli, W. (2006). Melting glaciers and soil development in the proglacial area Morteratsch (Swiss Alps): I. Soil type chronosequence. Arctic, Antarctic, and Alpine Research, 38(4), 499–509.
  • Eichel, J. (2019). Vegetation Succession and Biogeomorphic Interactions in Glacier Forelands. In T. Heckmann & D. Morche (Eds.) Geomorphology of Proglacial Systems. Geography of the Physical Environment. Springer https://doi.org/10.1007/978-3-319-94184-4_19,
  • Eichel, J., Draebing, D., & Meyer, N. (2018). From active to stable: Paraglacial transition of Alpine lateral moraine slopes. Land Degradation & Development, 29(11), 4158–4172. https://doi.org/10.1002/ldr.3140
  • Gales, S. J., & Hoare, P. G. (1991). Quaternary sediments: petrographic methods for the study of unlithified rocks belhaven.
  • Galster, F., Cavargna-Sani, M., Epard, J. L., & Masson, H. (2012). New stratigraphic data from the Lower Penninic between the Adula nappe and the Gotthard massif and consequences for the tectonics and the paleogeography of the Central Alps. Tectonophysics, 579, 37–55. https://doi.org/10.1016/j.tecto.2012.05.029
  • Garbarino, M., Lingua, E., Weisberg, P. J., Bottero, A., Meloni, F., & Motta, R. (2013). Land-use history and topographic gradients as driving factors of subalpine Larix decidua forests. Landscape Ecology, 28(5), 805–817. https://doi.org/10.1007/s10980-012-9792-6
  • Gottero, F., Ebone, A., Terzuolo, P., & Camerano, P. (2007). I boschi del Piemonte, conoscenze e indiriz-zi gestionali. Regione Piemonte. Blu Edizioni, 240.
  • Huggett, R. J. (1998). Soil chronosequences, soil development, and soil evolution: A critical review. Catena, 32(3–4), 155–172. https://doi.org/10.1016/S0341-8162(98)00053-8
  • IPLA, Regione Piemonte. (2007). Carta dei Suoli del Piemonte in scala (Vol. 1).
  • IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
  • Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., & Schlüchter, C. (2009). Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews, 28(21–22), 2137–2149. https://doi.org/10.1016/j.quascirev.2009.03.009
  • Jahn, R., Blume, H. P., Asio, V. B., Spaargaren, O., & Schad, P. (2006). Guidelines for soil description. FAO.
  • Jenny, H. (1941). Factors of soil formation: A system of quantitative pedology. McGraw-Hill book company inc.
  • Johnson, D. L., & Watson-Stegner, D. (1987). Evolution model of pedogenesis. Soil Science, 143(5), 349–366. https://doi.org/10.1097/00010694-198705000-00005
  • Kabala, C., Chachulski, Ł., Gądek, B., Korabiewski, B., Mętrak, M., & Suska-Malawska, M. (2021). Soil development and spatial differentiation in a glacial river valley under cold and extremely arid climate of East Pamir Mountains. Science of the Total Environment, 758, 144308. https://doi.org/10.1016/j.scitotenv.2020.144308
  • Kabala, C., & Zapart, J. (2012). Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard archipelago. Geoderma, 175, 9–20. https://doi.org/10.1016/j.geoderma.2012.01.025
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
  • Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., & Saugy, J.-N. (2017). Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology, 277, 210–227. https://doi.org/10.1016/j.geomorph.2016.02.015
  • Mahaney, W. C., Kalm, V., Kapran, B., Milner, M. W., & Hancock, R. G. V. (2009). A soil chronosequence in late glacial and neoglacial moraines, humboldt glacier, northwestern Venezuelan Andes. Geo-morphology, 109, 236–245.
  • Mahaney, W. C., Sanmugadas, K., & Hancock, R. G. V. (1999). Extractable Fe and Al of soils in the Middle Teton chronosequence, western Wyoming, USA. Zeitschrift für Geomorphologie, 43(3), 393–407. https://doi.org/10.1127/zfg/43/1999/393
  • Martignier, L., & Verrecchia, E. P. (2013). Weathering processes in superficial deposits (regolith) and their influence on pedogenesis: A case study in the Swiss Jura Mountains. Geomorphology, 189, 26–40. https://doi.org/10.1016/j.geomorph.2012.12.038
  • Masseroli, A., Bollati, I. M., Proverbio, S. S., Pelfini, M., & Trombino, L. (2020). Soils as a useful tool for reconstructing geomorphic dynamics in high mountain environments: The case of the Buscagna stream hydrographic basin (Lepontine Alps). Geomorphology, 371, 107442. https://doi.org/10.1016/j.geomorph.2020.107442
  • Masseroli, A., Leonelli, G., Morra Di Cella, U., Verrecchia, E. P., Sebag, D., Pozzi, E. D., Maggi, V., Pelfini, M., & Trombino, L. (2021). An integrated approach for tracking climate-driven changes in treeline environments on different time scales in the Valle d’Aosta, Italian Alps. The Holocene, 31(10), 1525–1538. https://doi.org/10.1177/09596836211025974
  • Mavris, C., Egli, M., Plötze, M., Blum, J. D., Mirabella, A., Giaccai, D., & Haeberli, W. (2010). Initial stages of weathering and soil formation in the Morteratsch proglacial area (Upper Engadine, Switzerland). Geoderma, 155(3–4), 359–371. https://doi.org/10.1016/j.geoderma.2009.12.019
  • Maxelon, M., & Mancktelow, N. S. (2005). Three-dimensional geometry and tectonostratigraphy of the Pennine zone, Central Alps, Switzerland and Northern Italy. Earth-Science Reviews, 71(3–4), 171–227. https://doi.org/10.1016/j.earscirev.2005.01.003
  • Mehra, O. P., & Jackson, M. L. (1960). Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7(1), 317–327. https://doi.org/10.1346/CCMN.1958.0070122
  • Mercier, D., Étienne, S., Sellier, D., & André, M. F. (2009). Paraglacial gullying of sediment-mantled slopes: A case study of Colletthøgda, Kongsfjorden area, West Spitsbergen (Svalbard). Earth Surface Processes and Landforms, 34(13), 1722–1789. https://doi.org/10.1002/esp.1862
  • Milnes, A. G. (1973). Structural reinterpretation of the classic simplon tunnel section of the central Alps. Geological Society of America Bulletin, 84(1), 269–274. https://doi.org/10.1130/0016-7606(1973)84<269:SROTCS>2.0.CO;2
  • Ministero delle Risorse Agricole Alimentari e Forestali. (1994). Metodi ufficiali di 1036 analisi chimica del suolo, con commenti ed interpretazioni. ISMEA.
  • Mourier, B., Poulenard, J., Chauvel, C., Faivre, P., & Carcaillet, C. (2008). Distinguishing subalpine soil types using extractible Al and Fe fractions and REE geochemistry. Geoderma, 145(1–2), 107–120. https://doi.org/10.1016/j.geoderma.2008.03.001
  • Nigrelli, G., & Collimedaglia, M. (2012). Reconstruction and analysis of two long-term precipitation time series: alpe devero and domodossola (Italian Western Alps). Theoretical and Applied Climatology, 109(3–4), 397–405. https://doi.org/10.1007/s00704-012-0586-1
  • Pawluk, S. (1972). Measurement of crystalline and amorphous iron removal in soils. Canadian Journal of Soil Science, 52(1), l19–123. https://doi.org/10.4141/cjss72-014
  • Pelfini, M., Leonelli, G., Trombino, L., Zerboni, A., Bollati, I., Merlini, A., Smiraglia, C., & Diolaiuti, G. (2014). New data on glacier fluctuations during the climatic transition at~ 4,000 cal. year BP from a buried log in the forni glacier forefield (Italian Alps). Rendiconti Lincei, 25(4), 427–437. https://doi.org/10.1007/s12210-014-0346-5
  • Piana, F., Fioraso, G., Irace, A., Mosca, P., d’Atri, A., Barale, L., Falletti, P., Monegato, G., Morelli, M., Tallone, S., & Vigna, G. B. (2017). Geology of Piemonte region (NW Italy, Alps-Apennines interference zone). Journal of Maps, 13(2), 395–405. https://doi.org/10.1080/17445647.2017.1316218
  • Pignalosa, A., Zattin, M., Massironi, M., & Cavazza, W. (2011). Thermochronological evidence for a late Pliocene climate-induced erosion rate increase in the Alps. International Journal of Earth Sciences, 100(4), 847–859. https://doi.org/10.1007/s00531-010-0510-9
  • Prokop, P., Rączkowska, Z., & Joshi, R. C. (2021). Spatiotemporal soil development in the Pindari proglacial area (Indian Central Himalaya). Episodes Journal of International Geoscience, 44(2), 115–127.
  • Rigamonti, I., & Uggeri, A. (2016). L’evoluzione Olocenica dell’Alpe Veglia nel quadro delle Alpi Centrali. Geol. Insubr, 1, 69–83.
  • Righi, D., Huber, K., & Keller, C. (1999). Clay formation and podzol development from postglacial moraines in Switzerland. Clay Minerals, 34(2), 319–332. https://doi.org/10.1180/000985599546253
  • Rodolfi, G., & Cremaschi, M. (1991). Il Suolo. Pedologia delle scienze della terra e nella valutazione del territorio.
  • Rubel, F., Brugger, K., Haslinger, K., & Auer, I. (2017). The climate of the European alps: shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorologische Zeitschrift, 26(2), 115–125. https://doi.org/10.1127/metz/2016/0816
  • Sacco, F. (1930). Il glacialismo nelle Valli Sesia, Strona, Anza e nell’Ossola. Ministero dei Lavori Pubblici – Servizio Idrografico –. Ufficio Idrografico del Po.
  • Sauer, D., Sponagel, H., Sommer, M., Giani, L., Jahn, R., & Stahr, K. (2007). Podzol: soil of the year 2007. A review on its genesis, occurrence, and functions. Journal of Plant Nutrition and Soil Science, 170(5), 581–597. https://doi.org/10.1002/jpln.200700135
  • Schwertmann, U. (1964). Differenzierung der eisenoxide des bodens durch extraktion mit ammoniumoxalat‐Lösung. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 105(3), 194–202. https://doi.org/10.1002/jpln.3591050303
  • Schwertmann, U. (1973). Use of oxalate for Fe extraction from soils. Canadian Journal of Soil Science, 53(2), 244–246. https://doi.org/10.4141/cjss73-037
  • Smiraglia, C., & Diolaiuti, G., Eds. (2015). Il Nuovo Catasto dei Ghiacciai Italiani (Ev-K2-CNR) Ed., Bergamo, 400 pp.
  • Spring, P. L., Reymond, B., Masson, H., & Steck, A. (1992). La nappe du Lebendun entre Alte Kaserne et le Val Cairasca (Massif du Simplon): Nouvelles observations et interprétations. Eclogae Geol. Helv, 85(1), 85–104.
  • Steck, A. (2008). Tectonics of the Simplon massif and lepontine gneiss dome: Deformation structures due to collision between the underthrusting European plate and the adriatic indenter. Swiss Journal of Geosciences, 101(2), 515–546. https://doi.org/10.1007/s00015-008-1283-z
  • Steck, A., Della Torre, F., Keller, F., Pfeifer, H. R., Hunziker, J., & Masson, H. (2013). Tectonics of the lepontine alps: Ductile thrusting and folding in the deepest tectonic levels of the central Alps. Swiss Journal of Geosciences, 106(3), 427–450. https://doi.org/10.1007/s00015-013-0135-7
  • Temme, A. J. (2019). The uncalm development of proglacial soils in the European Alps Since 1850. In Geomorphology of proglacial systems (pp. 315–326). Springer, Cham.
  • Temme, A. J., Heckmann, T., & Harlaar, P. (2016). Silent play in a loud theatre—Dominantly time-dependent soil development in the geomorphically active proglacial area of the Gepatsch glacier, Austria. Catena, 147, 40–50. https://doi.org/10.1016/j.catena.2016.06.042
  • Temme, A. J. A. M., & Lange, K. (2014). Proglacial soil variability and geomorphic activity – The case of three Swiss valleys. Earth Surface Process Landforms, 39, 1492–1499.
  • Temme, A. J., Lange, K., & Schwering, M. F. (2015). Time development of soils in mountain landscapes—divergence and convergence of properties with age. Journal of Soils and Sediments, 15(6), 1373–1382. https://doi.org/10.1007/s11368-014-0947-8
  • Torrent, J., & Gomez‐Martin, F. (1985). Incipient podzolization processes in Humic Acrisols of southern Spain. Journal of Soil Science, 36(3), 389–399. https://doi.org/10.1111/j.1365-2389.1985.tb00345.x
  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003
  • Wojcik, R., Donhauser, J., Frey, B., & Benning, L. G. (2020). Time since deglaciation and geomorphological disturbances determine the patterns of geochemical, mineralogical and microbial successions in an Icelandic foreland. Geoderma, 379, 114578. https://doi.org/10.1016/j.geoderma.2020.114578
  • Zanelli, R., Egli, M., Mirabella, A., Giaccai, D., & Abdelmoula, M. (2007). Vegetation effects on pedogenetic forms of Fe, Al and Si and on clay minerals in soils in southern Switzerland and northern Italy. Geoderma, 141(1–2), 119–129. https://doi.org/10.1016/j.geoderma.2007.05.008
  • Zwanzig, L., Zwanzig, M., & Sauer, D. (2021). Outcomes of a quantitative analysis of 48 soil chronosequence studies in humid mid and high latitudes: Importance of vegetation in driving podzolization. Catena, 196, 104821. https://doi.org/10.1016/j.catena.2020.104821

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.