231
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Understanding the spatial distribution and plausible genesis of supraglacial debris over the Himalaya-Karakoram region

, , , , &
Pages 620-642 | Received 10 Oct 2022, Accepted 06 Apr 2023, Published online: 17 Apr 2023

References

  • Alifu, H., Vuillaume, J., AB, J., & Hirabayashi, Y. (2020). Machine-learning classification of debris-covered glaciers using a combination of Sentinel-1/-2 (SAR/optical), Landsat 8 (thermal) and digital elevation data. Geomorphology, 369, 107365. https://doi.org/10.1016/j.geomorph.2020.107365
  • Anderson, L. S., & Anderson, R. S. (2016). Modeling debris-covered glaciers: Response to steady debris deposition. The Cryosphere, 10(3), 1105–1124. https://doi.org/10.5194/tc-10-1105-2016
  • Anderson, L. S., & Anderson, R. S. (2018). Debris thickness patterns on debris-covered glaciers. Geomorphology, 311, 1–12. https://doi.org/10.1016/j.geomorph.2018.03.014
  • Azam, M. F., & Srivastava, S. (2020). Mass balance and runoff modelling of partially debris-covered Dokriani Glacier in monsoon-dominated Himalaya using ERA5 data since 1979. Journal of Hydrology, 590(125432), 125432. https://doi.org/10.1016/j.jhydrol.2020.125432
  • Bahuguna, I., Rathore, B. P., Jasrotia, A. S., Randhawa, S. S., Yadav, S. K., Ali, S., Gautam, N., Poddar, J., Srigyan, M., Dhanade, A., Joshi, P., Singh, S. K., Rajak, D. R., & Sharma, S. (2021). Recent glacier area changes in Himalaya–Karakoram and the impact of latitudinal variation. Current Science, 127(7), 00113891. https://doi.org/10.18520/cs/v121/i7/929-940
  • Benn, D. I., & Evans, D. J. (2014). Glaciers & glaciation. Routledge.
  • Bhambri, R., Bolch, T., & Chaujar, R. K. (2011). Mapping of debris-covered glaciers in the Garhwal Himalayas using ASTER DEMs and thermal data. International Journal of Remote Sensing, 32(23), 8095–8119. https://doi.org/10.1080/01431161.2010.532821
  • Bishop, M. P., Bonk, R., JrU, K., & JrJf, S. (2001). Terrain analysis and data modeling for alpine glacier mapping. Polar Geography, 25(3), 182–201. https://doi.org/10.1080/10889370109377712
  • Bolch, T., Buchroithner, M. F., Kunert, A., & Kamp, U. 2007. Automated delineation of debris-covered glaciers based on ASTER data. In Geoinformation in Europe. proceedings of the 27th EARSeL Symposium, 4–7 June 2007, Bolzano, Italy. (pp. 4–6).
  • Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., & Stoffel, M. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314. https://doi.org/10.1126/science.1215828
  • Bolch, T., Pieczonka, T., & Benn, D. I. (2011). Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere, 5(2), 349–358. https://doi.org/10.5194/tc-5-349-2011
  • Bolch, T., Yao, T., Kang, S., Buchroithner, M. F., Scherer, D., Maussion, F., Huintjes, E., & Schneider, C. (2010). A glacier inventory for the western nyainqentanglha range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. The Cryosphere, 4(3), 419–433. https://doi.org/10.5194/tc-4-419-2010
  • Bortz, S., Steich, J., Wonneberger, B., & Chin, I. (1993). Accelerated weathering in building stone. International Journal of Rock Mechanics and Mining Sciences, 30(7), 1559–1562. https://doi.org/10.1016/0148-9062(93)90156-8
  • Boulton, G. S. (1978). Boulder shapes and grain‐size distributions of debris as indicators of transport paths through a glacier and till genesis. Sedimentology, 25(6), 773–799. https://doi.org/10.1111/j.1365-3091.1978.tb00329.x
  • Brun, F., Wagnon, P., Berthier, E., Jomelli, V., Maharjan, S. B., Shrestha, F., & Kraaijenbrink, P. D. A. (2019). Heterogeneous influence of glacier morphology on the mass balance variability in High Mountain Asia. Journal of Geophysical Research: Earth Surface, 124(6), 1331–1345. https://doi.org/10.1029/2018JF004838
  • Chen, Y., Wu, P., Yu, Q., & Xu, G. (2017). Effects of freezing and thawing cycle on mechanical properties and stability of soft rock slope. Advances in Materials Science and Engineering, 2017, 10. Article ID 3173659. https://doi.org/10.1155/2017/3173659
  • Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus climate change service Climate Data Store (CDS), date of access. https://cds.climate.copernicus.eu/cdsapp#!/home
  • Copland, L., Sylvestre, T., Bishop, M. P., Shroder, J. F., Seong, Y. B., Owen, L. A., Bush, A., & Kamp, U. (2011). Expanded and recently increased glacier surging in the Karakoram. Arctic, Antarctic, and Alpine Research, 43(4), 503–516. https://doi.org/10.1657/1938-4246-43.4.503
  • Deline, P. (2009). Interactions between rock avalanches and glaciers in the Mont Blanc massif during the late Holocene. Quaternary Science Reviews, 28(11–12), 1070–1083. https://doi.org/10.1016/j.quascirev.2008.09.025
  • Deline, P., Hewitt, K., Reznichenko, N., & Shugar, D. (2015). Rock avalanches onto glaciers. In J. F. Shroder & T. Davies (Eds.), Landslide hazards, risks and disasters (pp. 263–319). Academic Press. https://doi.org/10.1016/B978-0-12-396452-6.00009-4
  • Deprez, M., Kock De, T., Schutter De, G., & Cnudde, V. (2020). A review on freeze-thaw action and weathering of rocks. Earth-Science Reviews, 203(103143), 103143. https://doi.org/10.1016/j.earscirev.2020.103143
  • Fujita, K., & Nuimura, T. (2011). Spatially heterogeneous wastage of Himalayan glaciers. Proceedings of the National Academy of Sciences, 108(34), 14011–14014. https://doi.org/10.1073/pnas.1106242108
  • Fyffe, C. L., Reid, T. D., Brock, B. W., Kirkbride, M. P., Diolaiuti, G., Smiraglia, C., & Diotri, F. (2014). A distributed energy-balance melt model of an alpine debris-covered glacier. Journal of Glaciology, 60(221), 587–602. https://doi.org/10.3189/2014JoG13J148
  • Gerrard, J. (1988). Rocks and Landforms. Springer Science & Business Media.
  • Gibson, M. J., Glasser, N. F., Quincey, D. J., Mayer, C., Rowan, A. V., & Irvine-Fynn, T. D. (2017). Temporal variations in supraglacial debris distribution on Baltoro Glacier, Karakoram between 2001 and 2012. Geomorphology, 295, 572–585. https://doi.org/10.1016/j.geomorph.2017.08.012
  • GSI. 2019. Bhukosh. retrieved May 22, 2020, from geological survey of India website: http://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx
  • Hall, K. Evidence for freeze–thaw events and their implications for rock weathering in northern Canada: II. The temperature at which water freezes in rock. (2007). Earth Surface Processes and Landforms, 32(2), 249–259. published online 24 July 2006 in Wiley InterScience. https://doi.org/10.1002/esp.1389
  • Hall, D. K., Riggs, G. A., & Salomonson, V. V. (1995). Development of methods for mapping global snow cover using Moderate Resolution Image Spectroradiometer data. Remote Sensing of Environment, 54(2), 127–140. https://doi.org/10.1016/0034-4257(95)00137-P
  • Hershbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M. … Dahlgren, P. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
  • Huang, J., Kang, S., Guo, J., Sillanpää, M., Zhang, Q., Qin, X., Du, W., & Tripathee, L. (2014). Mercury distribution and variation on a high-elevation mountain glacier on the northern boundary of the Tibetan Plateau. Atmospheric Environment, 96, 27–36. https://doi.org/10.1016/j.atmosenv.2014.07.023
  • Huss, M., Bauder, A., Funk, M., & Hock, R. (2008). Determination of the seasonal mass balance of four Alpine glaciers since 1865. Journal of Geophysical Research: Earth Surface, 113(F1). https://doi.org/10.1029/2007JF000803
  • Immerzeel, W. W., Kraaijenbrink, P. D., Shea, J. M., Shrestha, A. B., Pellicciotti, F., Bierkens, M. F., & de Jong, S. M. (2013). High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sensing of Environment, 150, 93–103. https://doi.org/10.1016/j.rse.2014.04.025
  • Iverson, N. R., & Semmens, D. J. (1995). Intrusion of ice into porous media by regelation: A mechanism of sediment entrainment by glaciers. Journal of Geophysical Research: Solid Earth, 100(B6), 10219–10230. https://doi.org/10.1029/95JB00043
  • Janke, J. R., Bellisario, A. C., & Ferrando, F. A. (2015). Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. Geomorphology, 241, 98–121. https://doi.org/10.1016/j.geomorph.2015.03.034
  • Janke, J. R., Ng, S., & Bellisario, A. (2017). An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile. Geomorphology, 296, 142–152. https://doi.org/10.1016/j.geomorph.2017.09.002
  • Jia, H., Xiang, W., & Krautblatter, M. (2015). Quantifying rock fatigue and decreasing compressive and tensile strength after repeated freeze-thaw cycles. Permafrost and Periglacial Processes, 26(4), 368–377. https://doi.org/10.1002/ppp.1857
  • Jiskoot, H., Murray, T., & Boyle, P. (2000). Controls on the distribution of surge-type glaciers in Svalbard. Journal of Glaciology, 46(154), 412–422.
  • Ji, Q., Yang, T. B., Li, M. Q., Dong, J., Qin, Y., & Liu, R. (2022). Variations in glacier coverage in the Himalayas based on optical satellite data over the past 25 years. CATENA, 214, 106240. https://doi.org/10.1016/j.catena.2022.106240
  • Kääb, A., Berthier, E., Nuth, C., Gardelle, J., & Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495–498.
  • Kahle, A. B. (1977). A simple thermal model of the earth’s surface for geologic mapping by remote sensing. Journal of Geophysical Research, 82(11), 1673–1680.
  • King, O., Bhattacharya, A., Bhambri, R., & Bolch, T. (2019). Glacial lakes exacerbate Himalayan glacier mass loss. Scientific Reports, 9(1), 1–9.
  • Kolay, E. (2016). Modeling the effect of freezing and thawing for sedimentary rocks. Environ Earth Sciences, 75(2016), 210.
  • Korup, O., Strom, A. L., & Weidinger, J. T. (2006). Fluvial response to large rock-slope failures: Examples from the Himalayas, the Tien Shan and the Southern Alps in New Zealand. Geomorphology, 78(1–2), 3–21.
  • Kulkarni, A. V., Singh, S. K., Mathur, P., & Mishra, V. D. (2007). Algorithm to monitor snow cover using AWiFS data of RESOURCESAT-1 for the Himalayan region. International Journal of Remote Sensing, 271(12), 2449–2457.
  • Li, J., Zhou, K., Liu, W., & Zhang, Y. (2018). Analysis of the effect of freeze–thaw cycles on the degradation of mechanical parameters and slope stability. Bulletin of Engineering Geology and the Environment, 77(2018), 573–580. https://doi.org/10.1007/s10064-017-1013-8
  • Manley, W. F. 2008. Geospatial inventory and analysis of glaciers: A case study for the eastern Alaska Range. In R. S. Williams Jr. & J. G. Ferrigno, Eds. Satellite image atlas of glaciers of the world. Denver, CO, United States Geological Survey, K424–439. (USGS Professional Paper 1386K). (USGS Professional Paper 1386K)
  • Matsuoka, N. (2001). Direct observation of frost wedging in alpine bedrock. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 26(6), 601–614.
  • Matsuoka, N., Hirakawa, K., Watanabe, T., Haeberli, W., & Keller, F. 1998. The role of diurnal, annual and millennial freeze-thaw cycles in controlling alpine slope instability. PERMAFROST – Seventh International Conference (Proceedings). Yellowknife (Canada), collection Nordicana No 55.
  • McCarthy, M., Miles, E., Kneib, M., Buri, P., Fugger, S., & Pellicciotti, F. (2022). Supraglacial debris thickness and supply rate in High-Mountain Asia. Communications Earth & Environment, 3(1), 1–11.
  • Mukherjee, K., Bhattacharya, A., Pieczonka, T., Ghosh, S., & Bolch, T. (2018). Glacier mass budget and climate reanalysis data indicate a climatic shift around 2000 in Lahaul-Spiti, western Himalaya. Climatic Change, 148(1), 219–233.
  • Nagai, H., Fujita, K., Nuimura, T., & Sakai, A. (2013). Southwest-facing slopes control the formation of debris-covered glaciers in the Bhutan Himalaya. The Cryosphere, 7(4), 1303–1314.
  • Nakawo, M., Iwata, S., Watanabe, O., & Yoshida, M. (1986). Processes which distribute supraglacial debris on the Khumbu Glacier, Nepal Himalaya. Annals of Glaciology, 8, 129–131.
  • NASA Shuttle Radar Topography Mission (SRTM). (2013). Shuttle Radar Topography Mission (SRTM) Global. Distributed by OpenTopography. Accessed: 2022-03-13. https://doi.org/10.5069/G9445JDF.
  • Ojha, S., Fujita, K., Sakai, A., Nagai, H., & Lamsal, D. (2017). Topographic controls on the debris-cover extent of glaciers in the Eastern Himalayas: Regional analysis using a novel high-resolution glacier inventory. Quaternary International, 455, 82–92.
  • Owen, L. A., Finkel, R. C., & Caffee, M. W. (2002). A note on the extent of glaciation throughout the Himalaya during the global Last Glacial Maximum. Quaternary Science Reviews, 21(1–3), 147–157.
  • Palazzi, E., Von Hardenberg, J., & Provenzale, A. (2013). Precipitation in the Hindu‐Kush Karakoram Himalaya: Observations and future scenarios. Journal of Geophysical Research Atmospheres, 118(1), 85–100.
  • Pant, R. K., Phadtare, N. R., Chamyal, L. S., & Juyal, N. (2005). Quaternary deposits in Ladakh and Karakoram Himalaya: A treasure trove of the palaeoclimate records. Current Science, 88(11), 1789–1798.
  • Park, K., Lee, B. Y., Lee, K., & Kim, D. (2020). Analysis of effects of rock physical properties changes from freeze–thaw weathering in Ny-Ålesund Region: Part 2-correlations and prediction of weathered properties. Applied Sciences, 10(10), 3392.
  • Paul, F., Huggel, C., & Kääb, A. (2004). Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sensing of Environment, 89(4), 510–518.
  • Paul, F., Kääb, A., Maisch, M., Kellenberger, T., & Haeberli, W. (2004). Rapid disintegration of Alpine glaciers observed with satellite data. Geophysical Research Letters, 31(21), 12–15.
  • Pritchard, H. D. (2017). Asia’s glaciers are a regionally important buffer against drought. Nature, 545(7653), 169–174.
  • Reznichenko, N., Davies, T., Shulmeister, J., & McSaveney, M. (2010). Effects of debris on ice-surface melting rates: An experimental study. Journal of Glaciology, 56(197), 384–394.
  • Rignot, E., Rivera, A., & Casassa, G. (2003). Contribution of the Patagonia Icefields of South America to sea level rise. Science, 302(5644), 434–437.
  • Robson, B. A., Nuth, C., Dahl, S. O., Hölbling, D., Strozzi, T., & Nielsen, P. R. (2015). Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sensing of Environment, 170, 372–387.
  • Salerno, F., Thakuri, S., Tartari, G., Nuimura, T., Sunako, S., Sakai, A., & Fujita, K. (2017). Debris-covered glacier anomaly? Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of Himalayan glaciers. Earth and Planetary Science Letters, 471(Aug), 19–31.
  • Scherler, D., Bookhagen, B., & Strecker, M. R. (2011). Spatially variable response of Himalayan glaciers to climate change affected by debris cover. NATURE GEOSCIENCE | ADVANCE ONLINE PUBLICATION. https://doi.org/10.1038/NGEO1068.
  • Scherler, D., Wulf, H., & Gorelick, N. (2018). Global assessment of supraglacial debris‐cover extents. Geophysical Research Letters, 45(21), 11–798.
  • Sharma, A. K., Singh, S. K., Kulkarni, A. V., & Ajai. (2013). Glacier inventory in indus, Ganga and Brahmaputra Basins of the Himalaya. National Academy Science Letters ISSN 0250-541X, 36(5), 497–505. (Natl. Acad. Sci. Lett. (2013) 36. https://doi.org/10.1007/s40009-013-0167-6
  • Shukla, A., Arora, M. K., & Gupta, R. P. (2010). Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters. Remote Sensing of Environment, 114(7), 1378–1387.
  • Shukla, A., & Garg, N. (2019). Evolution of a debris-covered glacier in the western Himalaya during the last four decades (1971–2016): A multiparametric assessment using remote sensing and field observations. Geomorphology, 341(Sep), 1–14.
  • Singh, S. K., Rathore, B. P., Bahuguna, I. M., & Ajai. (2014). Snow cover variability in the Himalayan–Tibetan region. International Journal of Climatology, 34(2), 446–452.
  • Takarli, M., Prince, W., & Siddique, R. (2008). Damage in granite under heating/cooling cycles and water freeze–thaw condition. International Journal of Rock Mechanics & Mining Sciences, 45(7), 1164–1175.
  • Uhlmann, M., Korup, O., Huggel, C., Fischer, L., & Kargel, J. S. (2013). Supra‐glacial deposition and flux of catastrophic rock–slope failure debris, south‐central Alaska. Earth Surface Processes and Landforms, 38(7), 675–682.
  • Woerkom, T. V., Steiner, J. F., Kraaijenbrink, P. D., Miles, E. S., & Immerzeel, W. W. (2019). Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya. Earth Surface Dynamics, 7(2), 411–427.
  • Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., & Pu, J. (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9), 663–667.
  • Young, B. B., & Millman, A. P. (1964). Microhardness and deformation characteristics of ore minerals. Institute of Mining, Metallurgical Transactions, 73, 437–466.
  • Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B., & Bajracharya, S. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), 745–762.
  • Zemp, M., Hoelzle, M., & Haeberli, W. (2009). Six decades of glacier mass-balance observations: A review of the worldwide monitoring network. Annals of Glaciology, 50(50), 101–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.