153
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Assessing the short-term inter-annual growth of the largest documented gully network in South Africa using UAV and SfM methodology

ORCID Icon, , , &
Pages 284-306 | Received 21 Sep 2022, Accepted 03 Jul 2023, Published online: 07 Jul 2023

References

  • Anderson, R. L., Rowntree, K. M., & Le Roux, J. J. (2021). An interrogation of research on the influence of rainfall on gully erosion. Catena, 206, 105482. https://doi.org/10.1016/j.catena.2021.105482
  • Argüello, G. L., Dasso, C. M., & Sanabria, J. A. (2006). Effects of intense rainfalls and their recurrence: Case study in Corralito ravine, Córdoba Province, Argentina. Quaternary International, 158(1), 140–146. https://doi.org/10.1016/j.quaint.2006.05.020
  • Bäse, F., Heimschrot, J., Muller Schmeid, H., & Flugel, W. A., 2006. The impact of land use change on the hydrological dynamic of the semi-arid tsitsa catchment in South Africa. In: M. Kappas, C. Kleinn, & S. Sloboda (Eds.), Global Change Issues in Developing and Emerging Countries: Proceedings of the 2nd Göttingen GIS and Remote Sensing, Gottingen, Germany (pp. 257–268).
  • Beckhedahl, H. R., & De Villiers, A. B. (2000). Accelerated erosion by piping in the Eastern Cape Province, South Africa. South African Geographical Journal, 82(3), 157–162. https://doi.org/10.1080/03736245.2000.9713709
  • Bergonse, R., & Reis, E. (2016). Controlling factors of the size and location of large gully networks: A regression-based exploration using reconstructed pre-erosion topography. Catena, 147, 621–631. https://doi.org/10.1016/j.catena.2016.08.014
  • Betts, H. D., Trustrum, N. A., & De Rose, R. C. (2003). Geomorphic changes in a complex gully network measured from sequential digital elevation models, and implications for management. Earth Surface Processes and Landforms, 28(10), 1043–1058. https://doi.org/10.1002/esp.500
  • Botha, G. A., & Singh, R. (2012). Geology, geohydrology and development potential zonation of the uThukela district municipality; specialist contribution towards the environmental management framework. Council for Geoscience.
  • Bouchnak, H., Felfoul, M. S., Boussema, M. R., & Snane, M. H. (2009). Slope and rainfall effects on the volume of sediment yield by gully erosion in the Souar lithologic formation (Tunisia). Catena, 78(2), 170–177. https://doi.org/10.1016/j.catena.2009.04.003
  • Busnelli, J., Neder, L. D. V., & Sayago, J. M. (2006). Temporal dynamics of soil erosion and rainfall erosivity as geoindicators of land degradation in Northwestern Argentina. Quaternary International, 158(1), 147–161. https://doi.org/10.1016/j.quaint.2006.05.019
  • Capra, A., Porto, P., & Scicolone, B. (2009). Relationships between rainfall characteristics and ephemeral gully erosion in a cultivated catchment in Sicily (Italy). Soil and Tillage Research, 105(1), 77–87. https://doi.org/10.1016/j.still.2009.05.009
  • Castillo, C., Pérez, R., James, M. R., Quinton, J. N., Taguas, E. V., & Gómez, J. A. (2012). Comparing the accuracy of several field methods for measuring gully erosion. Soil Science Society of America Journal, 76(4), 1319–1332. https://doi.org/10.2136/sssaj2011.0390
  • Chaplot, V., Brown, J., Dlamini, P., Eustice, T., Janeau, J. L., Jewitt, G., Lorentz, S., Martin, L., Nontokozo-Mchunu, C., Oakes, E., Podwojewski, P., Revil, S., Rumpel, C., & Zondi, N. (2011). Rainfall simulation to identify the storm-scale mechanisms of gully bank retreat. Agricultural Water Management, 98(11), 1704–1710. https://doi.org/10.1016/j.agwat.2010.05.016
  • Cook, K. L. (2017). An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, 278, 195–208. https://doi.org/10.1016/j.geomorph.2016.11.009
  • Dalil, M., Ilegieuno, A. A., Babangid, M. U., & Husain, A. (2016). Assessment of the impacts of gully erosion on Auchi settlement, southern Nigeria. Journal of Geography and Regional Planning, 9(7), 128–138. https://doi.org/10.5897/JGRP2016.0558
  • Dardis, G., & Beckedahl, H. (1988). Drainage evolution in an ephemeral soil pipe-gully system, Transkei, Southern Africa. In G. Dardis & B. P. Moon (Eds.), Geomorphological studies in Southern Africa (pp. 247–265). A.A. Balkema, Rotterdam.
  • DEDEA: Department of Economic Development and Environmental Affairs, 2009. The Eastern Cape State of the environment report (2nd ed.). CSIR Division of Water, Environment and Forestry Technology:
  • Fox, G. A., & Wilson, G. V. (2010). The role of subsurface flow in hillslope and stream bank erosion: A review. Soil Science Society of America Journal, 74(3), 717–733. https://doi.org/10.2136/sssaj2009.0319
  • Fuller, I. C., Strohmaier, F., McColl, S. T., Tunnicliffe, J., & Marden, M. (2020). Badass gully morphodynamics and sediment generation in Waipaoa Catchment, New Zealand. Earth Surface Processes and Landforms, 45(15), 3917–3930. https://doi.org/10.1002/esp.5010
  • Gong, C., Lei, S., Bian, Z., Liu, Y., Zhang, Z., & Cheng, W. (2019). Analysis of the development of an erosion gully in an open-pit coal mine dump during a winter freeze-thaw cycle by using low-cost UAVs. Remote Sensing, 11(11), 1356–1373. https://doi.org/10.3390/rs11111356
  • Gwapedza, D., Nyamela, N., Hughes, D. A., Slaughter, A. R., Mantel, S. K., & van der Waal, B. (2021). Prediction of sediment yield of the Inxu River catchment (South Africa) using the MUSLE. International Soil & Water Conservation Research, 9(1), 37–48. https://doi.org/10.1016/j.iswcr.2020.10.003
  • Hayas, A., Peña, A., & Vanwalleghem, T. (2019). Predicting gully width and widening rates from upstream contribution area and rainfall: A case study in SW Spain. Geomorphology, 341, 130–139. https://doi.org/10.1016/j.geomorph.2019.05.017
  • Hayas, A., Vanwalleghem, T., Laguna, A., Penã, A., & Giráldez, J. V. (2017). Reconstructing long-term gully dynamics in Mediterranean agricultural areas. Hydrology and Earth System Sciences, 21(1), 235–249. https://doi.org/10.5194/hess-21-235-2017
  • Hedding, D. W., Calvert, D. R., Tatayah, V., Cole, N., Ruhomaun, K., Khadun, A., Sumner, P. D., & Nel, W. (2020). A comprehensive study of erosivity and soil erosion over a small tropical islet: Round Island, Mauritius. Land Degradation and Development, 31(3), 372–382. https://doi.org/10.1002/ldr.3455
  • Itzkin, A., Scholes, M. C., Clifford-Holmes, J. K., Rowntree, K., van der Waal, B., & Coetzer, K. (2021). A social-ecological systems understanding of drivers of degradation in the Tsitsa River catchment to inform sustainable land management. Sustainability, 13(2), 516. https://doi.org/10.3390/su13020516
  • Kakembo, V., Xanga, W. W., & Rowntree, K. (2009). Topographic thresholds in gully development on the hillslopes of communal areas in Ngqushwa local municipality, Eastern Cape, South Africa. Geomorphology, 110(3–4), 188–194. https://doi.org/10.1016/j.geomorph.2009.04.006
  • Kirkby, M. J., & Bracken, L. J. (2009). Gully processes and gully dynamics. Earth Surface Processes and Landforms, 34(14), 1841–1851. https://doi.org/10.1002/esp.1866
  • Kirkby, M. J., & Bull, L. J. (2000). Some factors controlling gully growth in fine-grained sediments: A model applied in southeast Spain. Catena, 40(2), 127–146. https://doi.org/10.1016/S0341-8162(99)00077-6
  • Koci, J., Sidle, R. C., Jarihani, B., & Cashman, M. J. (2020). Linking hydrological connectivity to gully erosion in savanna rangelands tributary to the Great Barrier Reef using structure-from-motion photogrammetry. Land Degradation and Development, 31(1), 20–36. https://doi.org/10.1002/ldr.3421
  • Krenz, J., Greenwood, P., & Kuhn, N. J. (2019). Soil degradation mapping in drylands using Unmanned Aerial Vehicle (UAV) data. Soil Systems, 3(2), #33. https://doi.org/10.3390/soilsystems3020033
  • Le Roux, J. J. (2018). Sediment yield potential in South Africa’s only large river network without a dam: Implications for water resource management. Land Degradation and Development, 29(3), 765–775. https://doi.org/10.1002/ldr.2753
  • Le Roux, J. J., Barker, C. H., Weepener, H. L., van der Berg, E., & Pretorious, S. N., 2015. Sediment yield modelling in the Mzimvubu River catchment. WRC Report No. 2243/1/15. Pretoria.
  • Le Roux, J. J., Morake, L., van der Waal, B., Anderson, R. L., & Hedding, D. W. (2022). Intra-gully mapping of the largest documented gully network in South Africa using UAV photogrammetry: Implications for restoration strategies. Progress in Physical Geography: Earth and Environment, 46(5), 772–789. https://doi.org/10.1177/03091333221101057
  • Le Roux, J. J., & Sumner, P. D. (2012). Factors controlling gully development: Comparing continuous and discontinuous gullies. Land Degradation and Development, 23(5), 440–449. https://doi.org/10.1002/ldr.1083
  • Marden, M., Fuller, I. C., Herzig, A., & Betts, H. D. (2018). Badass gullies: Fluvio-mass-movement gully complexes in New Zealand’s East Coast region, and potential for remediation. Geomorphology, 307, 12–23. https://doi.org/10.1016/j.geomorph.2017.11.012
  • Martínez-Casasnovas, J. A., Ramos, M. C., & Poesen, J. (2004). Assessment of sidewall erosion in large gullies using multi-temporal DSMs and logistic regression analysis. Geomorphology, 58(1–4), 305–321. https://doi.org/10.1016/j.geomorph.2003.08.005
  • Moeyersons, J., Makanzu Imwangana, F., & Dewitte, O. (2015). Site- and rainfall-specific runoff coefficients and critical rainfall for mega-gully development in Kinshasa (DR Congo). Natural Hazards, 79(S1), 203–233. https://doi.org/10.1007/s11069-015-1870-z
  • Mohammed, A.I, & Abdulrahman, F.H. (2020). Evaluation of UAV-based DEM for volume calculation. Journal of Duhok University, 23(1), 11–24. https://doi.org/10.26682/sjuod.2020.23.1.2
  • Nel, W., Hauptfleisch, A., Sumner, P. D., Boojhawon, R., Rughooputh, S. D. D. V., & Dhurmea, K. R. (2016). Intra-event characteristics of extreme erosive rainfall on Mauritius. Physical Geography, 7(3–4), 264–275. https://doi.org/10.1080/02723646.2016.1189756
  • Neugirg, F., Stark, M., Kaiser, A., Vlacilova, M., Della Seta, M., Vergari, F., Schmidt, J., Becht, M., & Haas, F. (2016). Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology, 269, 8–22. https://doi.org/10.1016/j.geomorph.2016.06.027
  • Nobajas, A., Waller, R. I., Robinson, Z. P., & Sangonzalo, R. (2017). Too much of a good thing? The role of detailed UAV imagery in characterizing large-scale badland drainage characteristics in South-Eastern Spain. International Journal of Remote Sensing, 38(8–10), 2844–2860. https://doi.org/10.1080/01431161.2016.1274450
  • Patton, P. C., & Schumm, S. A. (1975). Gully erosion, Northwestern Colorado: A threshold phenomenon. Geology, 3(2), 88–90. https://doi.org/10.1130/0091-7613(1975)3<88:GENCAT>2.0.CO;2
  • Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and environmental change: Importance and research needs. Catena, 50(2–4), 91–133. https://doi.org/10.1016/S0341-8162(02)00143-1
  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Prediction of soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). In Agric handbook (pp. 703). United States Department of Agriculture.
  • Schumm, S. A., & Hadley, R. F. (1957). Arroyos and the semiarid cycle of erosion [Wyoming and New Mexico]. American Journal of Science, 255(3), 161–174. https://doi.org/10.2475/ajs.255.3.161
  • Taylor, R. J., Massey, C., Fuller, I. C., Marden, M., Archibald, G., & Ries, W. (2018). Quantifying sediment connectivity in an actively eroding gully complex, Waipaoa catchment. Geomorphology, 307, 24–37. https://doi.org/10.1016/j.geomorph.2017.10.007
  • van der Waal, B., & Rowntree, K. (2018). Landscape connectivity in the upper Mzimvubu River Catchment: An assessment of anthropogenic Influences on sediment connectivity. Land Degradation and Development, 29(3), 713–723. https://doi.org/10.1002/ldr.2766
  • Van Dijk, A. I. J. M., Bruijnzeel, L. A., & Roswell, C. J. (2002). Rainfall intensity‐kinetic energy relationships: A critical literature appraisal. Journal of Hydrology, 261(1–4), 1–23. https://doi.org/10.1016/S0022-1694(02)00020-3
  • Vanmaercke, M., Poesen, J., Van Mele, B., Demuzere, M., Bruynseels, A., Golosov, V., Bezerra, J. F. R., Bolysov, S., Dvinskih, A., Frankl, A., Fuseina, Y., Guerra, A. J. T., Haregeweyn, N., Ionita, I., Makanzu Imwangana, F., Moeyersons, J., Moshe, I., Nazari Samani, A. … Ryzhov, Y. V. (2016). How fast do gully headcuts retreat? Earth-Science Reviews, 154, 336–355. https://doi.org/10.1016/j.earscirev.2016.01.009
  • van Zijl, G. M., Ellis, F., & Rozanov, A. (2014). Understanding the combined effect of soil properties on gully erosion using quantile regression. South African Journal of Plant and Soil, 31(3), 163–172. https://doi.org/10.1080/02571862.2014.944228
  • Wei, W., Chen, L., Fu, B., & Chen, J. (2010). Water erosion response to rainfall and land use in different drought-level years in a loess hilly area of China. Catena, 81(1), 24–31. https://doi.org/10.1016/j.catena.2010.01.002
  • Yang, X., Li, M., Na, J., & Liu, K. (2017). Gully boundary extraction based on multidirectional hill-shading from high-resolution DSMs. Transactions in GIS, 21(6), 1204–1216. https://doi.org/10.1111/tgis.12273

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.