65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Temporal change in channel form and hydraulic behaviour of a tropical river due to natural forcing and anthropogenic interventions

, , ORCID Icon, , &
Received 15 Apr 2023, Accepted 22 Mar 2024, Published online: 22 Apr 2024

References

  • Allison, M., & Kepple, E. (2001). Modern sediment supply to the lower delta plain of the Ganges-Brahmaputra River in Bangladesh. Geo-Marine Letters, 21, 66–74.
  • Asharaf, S., & Ahrens, B. (2015). Indian summer monsoon rainfall processes in climate change scenarios. Journal of Climate, 28(13), 5414–5429.
  • Bandyopadhyay, S., Das, S., & Kar, N. S. (2015). Discussion: ʻChanging river courses in the western part of the Ganga–Brahmaputra delta’by Kalyan Rudra (2014), Geomorphology, 227, 87–100. Geomorphology, 227(250), 87–100.
  • Biswas, K. R. (2001). Rivers of Bengal, West Bengal District Gazetteers, higher education department. Government of West Bengal.
  • Bizzi, S., & Lerner, D. N. (2015). The use of stream power as an indicator of channel sensitivity to erosion and deposition processes. River Research and Applications, 31(1), 16–27. https://doi.org/10.1002/rra.2717
  • Brice, J. C. (1964). Channel patterns and terraces of the loup rivers in Nebraska. US Government Printing Office.
  • Brookes, A., Gregory, K. J., & Dawson, F. H. (1983). An assessment of river channelization in England and Wales. Science of the Total Environment, 27(2–3), 97–111. https://doi.org/10.1016/0048-9697(83)90149-3
  • Brookes, A., & Shields, F. D., Jr. (1996). River channel restoration: Guiding principles for sustainable projects.
  • Campana, D., Marchese, E., Theule, J. I., & Comiti, F. (2014). Channel degradation and restoration of an Alpine river and related morphological changes. Geomorphology, 221, 230–241. https://doi.org/10.1016/j.geomorph.2014.06.016
  • Charlton, R. (2008). Fundamentals of fluvial geomorphology (pp. 125). Milton Park, Abingdon, Oxon: Routledge.
  • Chin, A., Gidley, R., Tyner, L., & Gregory, K. (2017). Adjustment of dryland stream channels over four decades of urbanization. Anthropocene, 20, 24–36. https://doi.org/10.1016/j.ancene.2017.11.001
  • Das, B. C. (2014). Two indices to measure the intensity of meander. In M. Singh, R. B. Singh, & M. I. Hassan, (Eds.), ‘Landscape Ecology and Water Management’, Proceedings of IGU International Conference, Rohtak Conference, (Vol. 2, pp. 233–246) Published by Springer, Japan, ISSN:2198-3542, ISBN: 978-4-431-54870-6.
  • Das, B. C. (2015). Modeling of most efficient channel form: A quantitative approach. Modeling Earth Systems and Environment, 1(3), 1–9. https://doi.org/10.1007/s40808-015-0013-6
  • Das B. C. (2024). Compliance of discharge estimates from proxy parameters: a study on an ungauged station of a Himalayan river. Sustainable Water Resources Management, 10(2). https://doi.org/10.1007/s40899-024-01059-6
  • Das, S. (2017). Evolution of drainage and morphology of Upper Bhagirathi Ganga Interfluve Region of West Bengal with special reference to palaeochannels. PhD Thesis. University of Calcutta
  • Das, B. C., & Islam, A. (2015). Channel asymmetry of an Ox-Bow Lake: A different perspective. International Journal of Ecosystem, 5(3A), 69–74.
  • Das, B. C., Islam, A., & Biswas, B. (2020). Morphometry as tool to trace out the genealogy of oxbow lake. Environmental Earth Sciences, 79(6), 1866–6299. https://doi.org/10.1007/s12665-020-8854-3
  • Datta, D. K., & Subramanian, V. (1997). Texture and mineralogy of sediments from the Ganges-Brahmaputra-Meghna river system in the Bengal Basin, Bangladesh and their environmental implications. Environmental Geology, 30(3–4), 181–188. https://doi.org/10.1007/s002540050145
  • David, M., Labenne, A., Carozza, J. M., & Valette, P. (2016). Evolutionary trajectory of channel planforms in the middle Garonne River (Toulouse, SW France) over a 130-year period: Contribution of mixed multiple factor analysis (MFAmix). Geomorphology, 258, 21–39. https://doi.org/10.1016/j.geomorph.2016.01.012
  • Dewan, A., Corner, R., Saleem, A., Rahman, M. M., Haider, M. R., Rahman, M. M., & Sarker, M. H. (2016). Assessing channel changes of the Ganges-Padma River system in Bangladesh using landsat and hydrological data. Geomorphology, 276, 257–279.
  • García-Martínez, B., & Rinaldi, M. (2022). Changes in meander geometry over the last 250 years along the lower Guadalquivir River (southern Spain) in response to hydrological and human factors. Geomorphology, 410, 108284. https://doi.org/10.1016/j.geomorph.2022.108284
  • Garrett, J. H. E. (1910). Bengal District Gazetteer, Nadia, Bengal Secretariat Book Depot, reprinted in 2001, p-14,15,26.
  • Goodbred, S. L., Jr., Kuehl, S. A., Steckler, M. S., & Sarker, M. H. (2003). Controls on facies distribution and stratigraphic preservation in the Ganges–Brahmaputra delta sequence. Sedimentary Geology, 155(3–4), 301–316.
  • Gregory, K. J. (2006). The human role in changing river channels. Geomorphology, 79(3–4), 172–191. https://doi.org/10.1016/j.geomorph.2006.06.018
  • Gregory, K. J., & Brookes, A. (1983). Hydrogeomorphology downstream from bridges. Applied Geography, 3(2), 145–159. https://doi.org/10.1016/0143-6228(83)90036-X
  • Guchhait, S. K., Islam, A., Ghosh, S., Das, B. C., & Maji, N. K. (2016). Role of hydrological regime and floodplain sediments in channel instability of the Bhagirathi River, Ganga-Brahmaputra Delta, India. Physical Geography, 37(6), 476–510. https://doi.org/10.1080/02723646.2016.1230986
  • Guerreiro, S. B., Birkinshaw, S., Kilsby, C., Fowler, H. J., & Lewis, E. (2017). Dry getting drier–The future of transnational river basins in Iberia. Journal of Hydrology: Regional Studies, 12, 238–252. https://doi.org/10.1016/j.ejrh.2017.05.009
  • Guzha, A. C., Rufino, M. C., Okoth, S., Jacobs, S., & Nóbrega, R. L. B. (2018). Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. Journal of Hydrology: Regional Studies, 15, 49–67. https://doi.org/10.1016/j.ejrh.2017.11.005
  • Hajdukiewicz, H., Wyżga, B., & Zawiejska, J. (2019). Twentieth-century hydromorphological degradation of Polish Carpathian rivers. Quaternary International, 504, 181–194. https://doi.org/10.1016/j.quaint.2017.12.011
  • Hirst, M. F. (1915). Report on the Nadia Rivers, reprinted in Rivers of Bengal, vol 3. Department of higher education-2002. West Bengal District Gazetteers.
  • Horton, R. E. (1932). Drainage-basin characteristics. Transactions American Geophysical Union, 13(1), 350–361.
  • Hunter, W.W. (1875). A Statistical Account of Bengal. Vol-I. Delhi: D.K. Publishing House.
  • Hunter, W. W. (1877). A Statistical Account of Bengal, Vol-II. Delhi: D.K. Publishing House.
  • Islam, A., & Guchhait, S. K. (2017). Analysing the influence of Farakka Barrage Project on channel dynamics and meander geometry of Bhagirathi river of West Bengal, India. Arabian Journal of Geosciences, 10(11), 1–18. https://doi.org/10.1007/s12517-017-3004-2
  • Islam, A., & Guchhait, S. K. (2020). Characterizing cross-sectional morphology and channel inefficiency of lower Bhagirathi River, India, in post-Farakka barrage condition. Natural Hazards, 103(3), 3803–3836. https://doi.org/10.1007/s11069-020-04156-9
  • Islam, A., Sardar, N., Mohinuddin, S., Hoque, M. M., Sengupta, S., Das, B. C., Sengupta, S., Ghosh, S., Zhang, W., Saha, U. D., Md Towfiqul Islam, A. R., Deb Barman, S., Sarkar, B., & Sengupta, B. (2023). Quasi-equilibrium channel metamorphosis in planform of a subtropical river in India in post-dam period. CATENA, 221, 106793. https://doi.org/10.1016/j.catena.2022.106793
  • Jiang, B., Wong, C. P., Lu, F., Ouyang, Z., & Wang, Y. (2014). Drivers of drying on the Yongding River in Beijing. Journal of Hydrology, 519, 69–79. https://doi.org/10.1016/j.jhydrol.2014.06.033
  • Julian, J. P., Wilgruber, N. A., de Beurs, K. M., Mayer, P. M., & Jawarneh, R. N. (2015). Long-term impacts of land cover changes on stream channel loss. Science of the Total Environment, 537, 399–410. https://doi.org/10.1016/j.scitotenv.2015.07.147
  • Knighton, A. D. (1981). Asymmetry of river channel cross–sections: Part I. Quantitative indices. Earth Surface Processes and Landforms, 6(6), 581–588. https://doi.org/10.1002/esp.3290060607
  • Leopold, L. B., & Maddock, T., Jr. (1953). The hydraulic geometry of stream channels and some physiographic implications. U. S. Geol. Survey Prof. Paper 252.
  • Leopold, L. B., & Wolman, M. G. (1957). River channel patterns-braided, meandering and straight.U.S. Geological Survey, Prof. Paper 282B. In M. Morisawa (Ed.), (1968) Streams: Their dynamics and morphology (p. 138). McGraw Hill.
  • Leopold, L. B., & Wolman, M. G. (1960). River Meanders, Bulletin of the Geological Society of Aerica, Vol-71, P. 774, cited from Julien, P.Y. (1985), planform geometry of meandering alluivial channels, civil engineering department, engineering research center. Colorado State University.
  • Liébault, F., & Piégay, H. (2002). Causes of 20th century channel narrowing in mountain and piedmont rivers of southeastern France. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 27(4), 425–444. https://doi.org/10.1002/esp.328
  • Majumder, S. C. (1942). Rivers of Bengal Delta. Calcutta University.
  • Mandarino A. (2022). Morphological adjustments of the lower Orba River (NW Italy) since the mid-nineteenth century. Geomorphology, 410, 108280. https://doi.org/10.1016/j.geomorph.2022.108280
  • Mathias, K. G. (1997). Hungry water: Effect of dams and gravel mining on river channels. Environmental Management, 21(4), 533–551. https://doi.org/10.1007/s002679900048
  • Mirza, M. M. Q. (1997). Hydrological changes in the Ganges system in Bangladesh in the post-Farakka period. Hydrological Sciences Journal, 42(5), 613–631. https://doi.org/10.1080/02626669709492062
  • Morid, R., Delavar, M., Eagderi, S., & Kumar, L. (2016). Assessment of climate change impacts on river hydrology and habitat suitability of Oxynoemacheilus bergianus. Case study: Kordan River, Iran. Hydrobiologia, 771(1), 83–100. https://doi.org/10.1007/s10750-015-2617-2
  • Morisawa, M. (1985). Streams: Their dinamacs and morphology. McGraw Hill.
  • Mueller, J. E. (1968). An introduction to the hydraulic and topographic sinuosity indexes 1. Annals of the Association of American Geographers, 58(2), 371–385. https://doi.org/10.1111/j.1467-8306.1968.tb00650.x
  • Mukherjee, A., Fryar, A. E., & Thomas, W. A. (2009). Geologic, geomorphic and hydrologic framework and evolution of the Bengal basin, India and Bangladesh. Journal of Asian Earth Sciences, 34(3), 227–244. https://doi.org/10.1016/j.jseaes.2008.05.011
  • Orsborn, J. F., & Stypula, J. M. (1987). New models of hydrological and stream channel relationships. IAHS-AISH Publication, 165, 375–384.
  • Quesada-Román, A., Ballesteros-Cánovas, J. A., Granados-Bolaños, S., Birkel, C., & Stoffel, M. (2022). Improving regional flood risk assessment using flood frequency and dendrogeomorphic analyses in mountain catchments impacted by tropical cyclones. Geomorphology, 396, 108000. https://doi.org/10.1016/j.geomorph.2021.108000
  • Rahman, M., & Rahaman, M. M. (2018). Impacts of farakka barrage on hydrological flow of Ganges river and environment in Bangladesh. Sustainable Water Resources Management, 4(4), 767–780. https://doi.org/10.1007/s40899-017-0163-y
  • Reaks, H. G. (1919). Report on the physical and hydraulic characteristics of the delta.
  • Roy, S., & Sahu, A. S. (2018). Road-stream crossing an in-stream intervention to alter channel morphology of headwater streams: Case study. International Journal of River Basin Management, 16(1), 1–19. https://doi.org/10.1080/15715124.2017.1365721
  • Rudra, K. (2014). Changing river courses in the western part of the Ganga–Brahmaputra delta. Geomorphology, 227, 87–100. https://doi.org/10.1016/j.geomorph.2014.05.013
  • Sarkar, B., & Islam, A. (2019). Assessing the suitability of water for irrigation using major physical parameters and ion chemistry: A study of the Churni River, India. Arabian Journal of Geosciences, 12(20), 637. https://doi.org/10.1007/s12517-019-4827-9
  • Sarkar, B., & Islam, A. (2020). Drivers of water pollution and evaluating its ecological stress with special reference to macrovertebrates (fish community structure): A case of Churni River, India. Environmental Monitoring and Assessment, 192(1), 45. https://doi.org/10.1007/s10661-019-7988-9
  • Sarkar, B., & Islam, A. (2022). Assessing poverty and livelihood vulnerability of the fishing communities in the context of pollution of the Churni River, India. Environmental Science and Pollution Research, 29(18), 26575–26598. https://doi.org/10.1007/s11356-021-17719-5
  • Sarkar, B., Islam, A., & Das, B. C. (2020). Anthropo-footprints on Churni River: A river of stolen water. In B. C. Das, S. Ghosh, A. Islam, & S. Roy (Eds.), Anthropogeomorphology of Bhagirathi-Hooghly River system in India (pp. 433–468). CRC Press.
  • Sarkar, B., Islam, A., & Das, B. C. (2021). Role of declining discharge and water pollution on habitat suitability of fish community in the Mathabhanga-Churni River, India. Journal of Cleaner Production, 326, 129426. https://doi.org/10.1016/j.jclepro.2021.129426
  • Sarkar, B., Islam, A., & Datta, D. (2022). Characterising topophilic behaviour in the wake of river decay and pollution through structural equation modelling. Environment, Development and Sustainability, 25(12), 15043–15074. https://doi.org/10.1007/s10668-022-02701-z
  • Sarkar, B., Islam, A., Shit, P. K., & Ghosh, S. (2022). Assessment of water pollution and aquatic toxicity of the Churni River, India. In B. C. Patra, P. K. Shit, G. S. Bhunia, & M. Bhattacharya (Eds.), River health and ecology in South Asia (pp. 303–327). Springer.
  • Saunders, P. L., & Chapman, G. P. (2006). Human intervention and dynamic environmental change in Bengal: A draft guide to maps and related geographical resources since 1752. Department of Geography, Lancaster University, Mimeo.
  • Schumm, S. A. (1969). River metamorphosis. Journal of the Hydraulics Division, 95(1), 255–274. https://doi.org/10.1061/JYCEAJ.0001938
  • Schumm, S. A. (2005). River variability and complexity. Cambridge University Press.
  • Scorpio, V., Aucelli, P. P., Giano, S. I., Pisano, L., Robustelli, G., Rosskopf, C. M., & Schiattarella, M. (2015). River channel adjustments in Southern Italy over the past 150 years and implications for channel recovery. Geomorphology, 251, 77–90. https://doi.org/10.1016/j.geomorph.2015.07.008
  • Scorpio, V., & Piégay, H. (2021). Is afforestation a driver of change in Italian rivers within the anthropocene era? Catena, 198, 105031. https://doi.org/10.1016/j.catena.2020.105031
  • Simons, D. B., & Albertson, M. L. (1963). Uniform water conveyance channels in alluvial material. Transactions of the American Society of Civil Engineers, 128, 65–107.
  • Turner, A. G., & Annamalai, H. (2012). Climate change and the South Asian summer monsoon. Nature Climate Change, 2(8), 587–595.
  • Wang, X., Li, J., Li, Y., Shen, Z., Wang, X., Yang, Z., & Lou, I. (2014). Is urban development an urban river killer? A case study of Yongding Diversion Channel in Beijing, China. Journal of Environmental Sciences, 26(6), 1232–1237. https://doi.org/10.1016/S1001-0742(13)60593-8
  • Weinman, B., Goodbred, S. L., Jr., Zheng, Y., Aziz, Z., Steckler, M., van Geen, A., Singhvi, A. K., & Nagar, Y. C. (2008). Contributions of floodplain stratigraphy and evolution to the spatial patterns of groundwater arsenic in Araihazar, Bangladesh. Geological Society of America Bulletin, 120(11–12), 1567–1580. https://doi.org/10.1130/B26209.1
  • Winterbottom, S. J. (2000). Medium and short-term channel planform changes on the rivers Tay and Tummel, Scotland. Geomorphology, 34(3–4), 195–208. https://doi.org/10.1016/S0169-555X(00)00007-6
  • Zhou, M., Xia, J., Lu, J., Deng, S., & Lin, F. (2017). Morphological adjustments in a meandering reach of the middle Yangtze River caused by severe human activities. Geomorphology, 285, 325–332. https://doi.org/10.1016/j.geomorph.2017.02.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.