418
Views
4
CrossRef citations to date
0
Altmetric
Articles

Iguanian lizards (Acrodonta and Pleurodonta) from the earliest Eocene (MP 7) of Dormaal, Belgium: the first stages of these iconic reptiles in Europe

ORCID Icon, , ORCID Icon &
Article: e2184696 | Received 17 Oct 2022, Accepted 01 Feb 2023, Published online: 28 Mar 2023

LITERATURE CITED

  • Alifanov, V. R. (1991). A revision of Tinosaurus asiaticus Gilmor [sic] (Agamidae). Paleontologicheskiy Zhurnal, 3, 115–119. [in Russian]
  • Alimi, T. O., Fuller D. O., Qualls W. A., Herrera S. V., Arevalo-Herrera M., Quinones M. L., Lacerda M. V., & Beier J. C. (2015). Predicting potential ranges of primary malaria vectors and malaria in northern South America based on projected changes in climate, land cover and human population. Parasites & Vectors, 8, 431.
  • Augé, M. L. (1987). Confirmation de la présence d’Iguanidae (Reptilia, Lacertilia) dans l’Éocène européen. Comptes Rendus de l’Académie des Sciences, Series II, 305, 633–636.
  • Augé, M. L. (1990). La faune de lézards et d’amphisbènes (Reptilia, Squamata) du gisement de Dormaal (Belgique, Eocène inférieur). Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, 60, 161–173.
  • Augé, M. L. (1992). Campinosaurus woutersi n.g. n.sp., Anguimorphe nouveau (Lacertilia) de l’Éocène inférieur de Dormaal (Belgique). Une relique éocène des Dorsetisauridae du Jurassique terminal/Crétacé basal? Comptes rendus de l'Académie des Sciences, 315, 885–889.
  • Augé, M. L. (2003). La faune de Lacertilia (Reptilia, Squamata) de l’Éocène inférieur de Prémontré (Bassin de Paris, France). Geodiversitas, 25, 539–574.
  • Augé, M. (2005). Evolution des lézards du Paléogène en Europe. Mémoires du Muséum national d’Histoire naturelle, Paris, 192, 1–369.
  • Augé, M. L. (2007). Past and present distribution of iguanid lizards. Arquivos do Museu Nacional, Rio de Janeiro, 65, 403–416.
  • Augé, M. L., Duffaud, S., Lapparent de Broin, F., Rage, J.-C., & Vasse, D. (1997). Les amphibiens et les reptiles de Prémontré (Cuisien,Bassin parisien): une herpétofaune de référence pour l'Eocène inférieur. Géologie de la France, 1, 23–33.
  • Augé, M.L., Folie, A., Smith, R., Phélizon, A., Gigase, P., & Smith, T. (2022). Revision of the oldest varanid, Saniwa orsmaelensis Dollo, 1923, from the earliest Eocene of northwest Europe. Comptes Rendus Palevol, 21, 511–529.
  • Augé, M. L., & Pouit, D. (2012). Presence of iguanid lizards in the European Oligocene Lazarus taxa and fossil abundance. Bulletin de la Societe Geologique de France, 183, 653–660.
  • Augé, M. L., & Rage, J.-C. (2006). Herpetofaunas from the upper Paleocene and lower Eocene of Morocco. Annales de Paléontologie, 92, 235–253.
  • Augé, M. L., & Smith, R. (1997). Les Agamidae (Reptilia, Squamata) du Paléogène d’Europe occidentale. Belgian Journal of Zoology, 127, 123–138.
  • Augé, M. L., & Smith, R. (2002). Nouveaux Lacertidae (Reptilia, Squamata) de l’Eocène inférieur européen. Belgian Journal of Zoology, 131, 3–15.
  • Averianov, A. (2001). A new species of Tinosaurus from the Paleocene of Kazakhstan (Squamata: Agamidae). Zoosystematica Rossica, 9, 459–460.
  • Averianov, A., & Danilov, I. (1996). Agamid lizards (Reptilia, Sauria, Agamidae) from the Early Eocene of Kyrgyzstan. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 12, 739–750.
  • Bahl, K. N. (1937). Skull of Varanus monitor (Linn.). Records of the Indian Museum, 39, 133–174.
  • Begon, M. E., Harper, J. L., & Townsend, C. R. (1996). Ecology. individuals, populations and communities. 3rd edition. Blackwell Science, Oxford, United Kingdom, 1068 pp.
  • Biochro M. (1997). Synthèses et tableaux de correlation. In J.-P. Aguilar, S. Legendre & J. Michaux (Eds.), Actes du Congrès BiochroM’97 Montpellier. Mémoires et Travaux de l’Ecole Pratique des Hautes Etudes, Institut de Montpellier, 21, pp. 769–805.
  • Borsuk-Bialynicka, M., & Moody, S. M. (1984). Priscagaminae, a new subfamily of the Agamidae (Sauria) from the Late Cretaceous of the Gobi Desert. Acta Palaeontologica Polonica, 29, 51–81.
  • Bradshaw, W. E., & Holzapfel, C. M. (2006). Evolutionary responses to rapid climate change. Science, 312, 1477–1478.
  • Burchardt, B. (1978). Oxygen isotope paleotemperatures from the Tertiary period in the North Sea area. Nature, 275, 121–123.
  • Cavelier, C., Chateauneuf, J. J., Pomerol, Ch., Rabussier, D., Renard, M., & Vergnaud-Grazzini, C. (1981). The geological events at the Eocene/Oligocene boundary. Palaeogeography Palaeoclimatology Palaeoecology, 36, 223–248.
  • Čerňanský, A. (2010). A revision of chamaeleonids from the Lower Miocene of the Czech Republic with description of a new species of Chamaeleo (Squamata, Chamaeleonidae). Geobios, 43, 605–613.
  • Čerňanský, A., & Augé, M. L. (2019). The Oligocene and Miocene fossil lizards (Reptilia, Squamata) of Central Mongolia. Geodiversitas, 41, 811–839.
  • Čerňanský, A., Daza, J. D., Smith, R., Bauer, A. M., Smith, T., & Folie, A. (2022). A new gecko from the earliest Eocene of Dormaal, Belgium - a thermophilic element of the “greenhouse world”. Royal Society Open Science, 9, 220429.
  • Čerňanský, A., Herrel, A., Kibii, J. M., Anderson, C. V., Boistel, R., & Lehmann, T. (2020). The only complete articulated early Miocene chameleon skull (Rusinga Island, Kenya) suggests an African origin for Madagascar’s endemic chameleons. Scientific Reports, 10, 109.
  • Čerňanský, A., Klembara, J., & Müller, J. (2016). The new rare record of the late Oligocene lizards and amphisbaenians from Germany and its impact on our knowledge of the European terminal Palaeogene. Palaeobiodiversity and Palaeoenvironments, 96, 559–587.
  • Christensen, K., & Melstrom K. M. (2021). Quantitative analyses of squamate dentition demonstrate novel morphological patterns. PLoS ONE, 16(9), e0257427.
  • Conrad, J. L. (2015). A New Eocene Casquehead Lizard (Reptilia, Corytophanidae) from North America. PLoS ONE, 10, e0127900.
  • Cooper, J. S., Poole, D. F. G., & Lawson, R. (1970). The dentition of agamid lizards with special reference to tooth replacement. Journal of Zoology, 162, 85–98
  • Cope, E. D. (1864). On the characters of the higher groups of Reptilia, Squamata and especially of the Diploglossa. Proceedings Academy of Natural Sciences of Philadelphia, 16, 224–231.
  • Cox, N., Young, B. E., Bowles, P., Fernandez, M., Marin, J., Rapacciuolo, G., Böhm, M., Brooks, T. M., Hedges, S. B., Hilton-Taylor, C., Hoffmann, M., Jenkins, R. K. B., Tognelli, M. F., Alexander, G. J., Allison, A., Ananjeva, N. B., Auliya, M., Avila, L. J., Chapple, D. G., Cisneros-Heredia, D. F., Cogger, H. G., Colli, G. R., de Silva, A., Eisemberg, C. C., Els, J., Fong, A. G., Grant, T. D., Hitchmough, R. A., Iskandar, D. T., Kidera, N., Martins, M., Meiri, S., Mitchell, N. J., Molur, S., Nogueira, C. C., Ortiz, J. C., Penner, J., Rhodin, A. G. J., Rivas, G. A., Rödel, M.-O., Roll, U., Sanders, K. L., Santos-Barrera, G., Shea, G. M., Spawls, S., Stuart, B. L., Tolley, K. A., Trape, J.-F., Vidal, M. A., Wagner, P., Wallace, B. P., & Xie, Y. (2022). A global reptile assessment highlights shared conservation needs of tetrapods. Nature, 605, 285–290.
  • Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K., Bohaty, S. M., Frieling, J., Goldner, A., Hilgen, F. J., Kip, E. L., Peterse, F., Van der Ploeg, R., Röhl, U., Schouten, S., & Sluijs, A. (2018). Synchronous tropical and polar temperature evolution in the Eocene. Nature, 559, 382–386.
  • Cuvier, G. J. L. N. F. D. (1829). Le Regne Animal Distribué, d'apres son Organisation, pur servir de base à l'Histoire naturelle des Animaux et d'introduction à l'Anatomie Comparé. Nouvelle Edition [second edition]. Vol. 2. Les Reptiles. Déterville, Paris, i-xvi, p. 1–406.
  • De Stefano, G. (1903). I sauri del Quercy appartenenti alla collezione Rossignol. Atti della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale in Milano, 42, 382–418.
  • Digimorph.org. (2002–2012). Digital morphology: a national science foundation digital library at the University of Texas at Austin [internet]. Austin, TX: The High Resolution X-ray Computed Tomography Facility at the University of Texas at Austin. Available at: http://www.digimorph.org/. Accessed 2022.
  • Dong, Z. M. (1965). A new species of Tinosaurus from Lushih, Honan. Vertebrata PalAsiatica, 9, 79–82. [in Chinese with English summary]
  • Dong, L. P., Evans, S. E., & Wang, Y. (2016). Taxonomic revision of lizards from the Paleocene deposits of the Qianshan Basin, Anhui, China. Vertebrata PalAsiatica, 54, 243–268.
  • Duffaud, S., & Rage, J.-C. (1997). Les remplissages karstiques polyphasés (Eocène, Oligocène, Pliocène) de Saint-Maximin (Phosphorites du Gard) et leur apport à la connaissance des faunes européennes notamment pour l'Eocène moyen (MP13). 2.- Systématique: Amphibiens et reptiles. In J. P. Aguilar, & J. Michaux (Eds.), BiochroM’97. Mémoires et travaux de l'Institut de Montpellier de l'Ecole Pratique Hautes Etudes, 21, 729–735.
  • Eberle, J. J., Fricke, H. C., Humphrey, J. D., Hackett, L., Newbrey, M. G., & Hutchison, J. H. (2010). Seasonal variability in Arctic temperatures during early Eocene time. Earth and Planetary Science Letters, 296, 481–486.
  • Eberle, J. J., Gottfried, M. D., Hutchison, J. H., & Brochu, C. A. (2014). First Record of Eocene Bony Fishes and Crocodyliforms from Canada’s Western Arctic. PloS ONE, 9(5), e96079
  • Estes, R. (1983). Sauria Terrestria, Amphisbaenia. In P. Wellnhofer (Ed.), Encyclopedia of Paleoherpetology, Part 10a. Gustav Fischer Verlag, Stuttgart - New York, 249 pp.
  • Estes, R., de Queiroz, K., & Gauthier, J. A. (1988). Phylogenetic relationships within Squamata. In R. Estes, & G. K. Pregill (Eds.), Phylogenetic Relationships of the Lizard Families. Stanford University Press, Stanford, pp. 119–281.
  • Estes, R., & Hutchison, J. H. (1980). Eocene lower vertebrates from Ellesmere Island, Canadian Arctic Archipelago. Palaeogeography, Palaeoclimatology, Palaeoecology, 30, 325–347.
  • Evans, S. E. (1984). The classification of the Lepidosauria. Zoological Journal of the Linnean Society, 82, 87–100.
  • Evans, S. E. (2008). The skull of lizards and tuatara. In C. Gans, A. S. Gaunt, & K. Adler (Eds.), Biology of the Reptilia, Volume 20, Morphology H: the skull of Lepidosauria. Society for the Study of Amphibians and Reptiles, Ithaca, New York, pp. 1–347.
  • Evans, S. E., Prasad, G. V. R., & Manhas, B. K. (2002). Fossil lizards from the Jurassic Kota Formation of India. Journal of Vertebrate Paleontology, 22, 299–312.
  • Fitzinger, L. J. (1843). Systema reptilium Fasciculus primus Amblyglossae. Braumüller et Seidel Bibliopolas, Vindobonae. p. vi + 106.
  • Folie, A., Smith, R., & Smith, T. (2013). New amphisbaenian lizards from the Early Paleogene of Europe and their implications for the early evolution of modern amphisbaenians. Geologica Belgica, 16, 227–235.
  • Foufopoulos, J., & Ives, A. R. (1999). Reptile extinctions on land-bridge islands: life-history attributes and vulnerability to extinction. The American Naturalist, 153, 1–25.
  • Frost, D. R., & Etheridge, R. (1989). A phylogenetic analysis and taxonomy of iguanian lizards (Reptilia: Squamata). Miscellaneous publication - University of Kansas, Museum of Natural History, 81, 1–65.
  • Frost, D. R., Etheridge, R., Janies, D., & Titus, T. A. (2001). Total evidence, sequence alignment, evolution of polychrotid lizards, and a reclassification of the Iguania (Squamata: Iguania). American Museum Novitates, 3343, 1–38.
  • Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., & Behlke, A. D. (2012). Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53, 3–308.
  • Georgalis, G. L., Čerňanský, A., Göktaş, F., Alpagut, B., Şarbak, A., & Mayda S. (2023). The antiquity of Asian chameleons—first potential Chamaeleonidae and associated squamate fauna from the Lower and Middle Miocene of Anatolia. Journal of Vertebrate Paleontology, e2160644.
  • Georgalis, G. L., & Joyce, W. G. (2017). A review of the fossil record of Old World turtles of the clade Pan-Trionychidae. Bulletin of the Peabody Museum of Natural History, 58, 115–208.
  • Georgalis, G.L., Rabi, M., & Smith, K.T. (2021). Taxonomic revision of the snakes of the genera Palaeopython and Paleryx (Serpentes, Constrictores) from the Paleogene of Europe. Swiss Journal of Palaeontology, 140 (18), 1–140.
  • Gilmore, C. W. (1943). Fossil lizards of Mongolia. Bulletin of the American Museum of Natural History, 81, 361–384.
  • Greenwood, D. R., & Wing, S. L. (1995). Eocene continental climates and latitudinal temperature gradients. Geology, 23, 1044–1048.
  • Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V., Pagani, M., Raymo, M., Royer, D. L., & Zachos, J. C. (2008). Target atmospheric CO2: Where should humanity aim? The Open Atmospheric Science Journal, 2, 217–231.
  • Harcourt, A. H., Coppeto, S. A., & Parks, S. A. (2002). Rarity, specialization and extinction in primates. Journal of Biogeography, 29, 445–456.
  • Hecht, M. K., & Hoffstetter, R. (1962). Note préliminaire sur les Amphibiens et les Squamates du Landénien supérieur et du Tongrien de Belgique. Bulletin de l ‘Institut royal des Sciences naturelles de Belgique, 38, 1–30.
  • Herrel, A., Aerts, P., Fret, J., & De Vree, F. (1999). Morphology of the feeding system in agamid lizards: ecological correlates. The Anatomical Record, 254, 496–507.
  • Holmes, R. B., Murray, A. M., Chatrath, P., Attia, Y. S., & Simons, E.L. (2010). Agamid lizard (Agamidae: Uromastycinae) from the lower Oligocene of Egypt. Historical Biology, 22, 215–223.
  • Hopkins, G. W., Thacker, J. I., Dixon, A. F. G., Waring, P., & Telfer, M. G. (2002). Identifying rarity in insects: the importance of host plant range. Biological Conservation, 105, 293–307.
  • Hou, L. H. (1974). Paleocene lizards from Anhui, China. Vertebrata PalAsiatica, 12, 193–202. [in Chinese with English summary].
  • Huey, R. B., Deutsch, C. A., Tewksbury, J. J., Vitt, L. J., Hertz, P. E., Alvarez Pérez, H. J., & Garland, Jr T. (2009). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences, 276, 1939–1948.
  • Janis, Ch. M. (1993). Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics, 24, 467–500.
  • Jenkins, K. M., Jones, M. E. H., Zikmund, T., Boyde, A., & Daza, J. D. (2017). A review of tooth implantation among rhynchocephalians (Lepidosauria). Journal of Herpetology, 51, 300–306.
  • Kuhn, O. (1944). Weitere Lacertilier, insbesondere Iguanidae aus dem Eozän des Geiseltales. Palaeontologische Zeitschrift, 23, 360–366.
  • Leal, M., & Gunderson, A. R. (2012). Rapid change in the thermal tolerance of a tropical lizard. The American Naturalist, 180, 815–822.
  • Leidy, J. (1872). Remarks on fossils from Wyoming. Proceedings of the Academy of Natural Sciences of Philadelphia, 1872, 277.
  • Leidy, J. (1873). Contributions to the extinct vertebrate fauna of the Western Territories. Annual report. United States Geological and Geographical Survey of the Territories, 6, 14–358.
  • Li, J. L. (1991). Fossil reptiles from Zhaili Member, Hedi Formation, Yuanqu, Shanxi. Vertebrata PalAsiatica, 29, 276–285. [in Chinese with English summary]
  • Macey, J. R., II Schulte, J. A., Larson, A., Ananjeva, N. B., Wang, Y., Pethiyagoda, R., Rastegar-Pouyani, N., & Papenfuss, T. J. (2000). Evaluating trans-Tethys migration: an example using acrodont lizard phylogenetics. Systematic Biology, 49, 233–256.
  • Markwick, P. J. (1994). “Equability”, continentality, and Tertiary “climate”: the crocodilian perspective. Geology, 22, 613–616.
  • Markwick, P. J. (2002). Integrating the present and past records of climate, biodiversity and biogeography: implications for palaeoecology and palaeoclimatology. In J. A. Crame, & A. W. Owen (Eds.), Palaeobiogeography and Biodiversity Change: the Ordovician and Mesozoic-Cenozoic Radiations. Geological Society, London, Special Publications, 194, 179–199.
  • Marsh, O. C. (1872). Preliminary description of new Tertiary reptiles. American Journal of Science, 4, 298–309.
  • Moody, S. (1980). Phylogenetic and historical biogeographical relationships of the genera in the family Agamidae (Reptilia: Lacertilia) [Ph.D. dissertation]. University of Michigan, Ann Arbor, Michigan, 373 pp.
  • Oppel, M. (1811). Die Ordnungen, Familien und Gattungen der Reptilien als Prodrom einer Naturgeschichte derselben. J. Lindauer, München, 86 pp.
  • Owens, I. P. F., & Bennett, P. M. (2000). Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proceedings of the National Academy of Sciences of the United States of America, 97, 12144–12148.
  • Pough, F. H., Andrews, R. M., Cadle, J. E., Crump, M. L., Savitzky, A. H., & Wells, K. D. (2004). Herpetology (3rd edition). Upper Saddle River: Pearson, 736 pp.
  • Pounds, J. A., Fogden, M. P. L., & Campbell, J. H. (1999). Biological responses to climate change on a tropical mountain. Nature, 398, 611–615.
  • Prasad, G. V. R., & Bajpai, S. (2008). Agamid lizards from the early Eocene of Western India: oldest Cenozoic lizards from South Asia. Palaeontologica Electronica, 11, 1.4A.
  • Pross, J., Contreras, L., Bijl, P. K., Greenwood, D. R., Bohaty, S. M., Schouten, S., Bendle, J. A., Röhl, U., Tauxe, L., Raine, J. I., Huck, C. E., van de Flierdt, T., Jamieson, S. S. R., Stickley, C. E., van de Schootbrugge, B., Escutia, C., Brinkhuis, H., & Integrated Ocean Drilling Program Expedition 318 Scientists. (2012). Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature, 488, 73–77.
  • Prothero, D. R., & Berggren, W. A. (1992). Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton, 582 pp.
  • Prothero, D. R., & Heaton, T. H. (1996). Faunal stability during the early Oligocene climatic crash. Palaeogeography, Palaeoclimatology, Palaeoecology, 127, 257–283.
  • Purvis, A., Gittleman, J. L., Cowlishaw, G., & Mace, G. M. (2000). Predicting extinction risk in declining species. Proceedings of the Royal Society of London Series B, 267, 1947–1952.
  • Rage, J.-C. (1987). Lower vertebrates from the early-middle Eocene Kuldana Formation of Kohat (Pakistan): Squamata. Contributions from the Museum of Paleontology, the University of Michigan, 27, 187–193.
  • Rage, J.-C. (2013). Mesozoic and Cenozoic squamates of Europe. In J. D. Gardner, & R. L. Nydam (Eds.), Mesozoic and Cenozoic lissamphibian and squamate assemblages of Laurasia. Palaeobiodiversity and Palaeoenvironments, 93, 517–534.
  • Rage, J.-C., Adaci, M., Bensalah, M., Mahboubi, M., Marivaux, L., Mebrouk, F., & Tabuce, R. (2021). Latest Early-early Middle Eocene deposits of Algeria (Glib Zegdou, HGL50), yield the richest and most diverse fauna of amphibians and squamate reptiles from the Palaeogene of Africa. Palaeovertebrata, 44, 32.
  • Rage, J. C., & Augé, M. L. (1993). Squamates from the Cenozoic of the western part of Europe. A review. Revue de Paléobiologie, 7, 199–216.
  • Rage, J.-C., & Augé, M. L. (2003). Amphibians and squamate reptiles from the lower Eocene of Silveirinha (Portugal). Ciências da Terra (UNL), 15, 103–116.
  • Rage, J.-C., & Augé, M. L. (2010). Squamate reptiles from the middle Eocene of Lissieu (France). A landmark in the middle Eocene of Europe. Geobios, 43, 253–268.
  • Rage, J.-C., & Augé M. L. (2015). Valbro: A new site of vertebrates from the early Oligocene (MP 22) of France (Quercy). III – Amphibians and squamates. Annales de Paleontologie, 101, 29–41.
  • Rana, R. S., Augé, M. L., Folie, A., Rose, K. D., Kumar, K., Singh, L., Sahni, A., & Smith, T. (2013). High diversity of acrodontan lizards in the Early Eocene Vastan Lignite Mine of India. Geologica Belgica, 16, 290–301.
  • Rea, D. K., Zachos, J. C., Owen, R. M., & Gingerich, P. D. (1990). Global change at the Paleocene-Eocene boundary: climatic and evolutionary consequences of tectonic events. Palaeogeograophy, Palaeoclimatology, Palaeoecology, 79, 117–128.
  • Reeder, T. W., Townsend, T. M., Mulcahy, D. G., Noonan, B. P., Wood, P. L. Jr., Sites, J. W. Jr., & Wiens, J. J. (2015). Integrated Analyses Resolve Conflicts over Squamate Reptile Phylogeny and Reveal Unexpected Placements for Fossil Taxa. PLoS ONE, 10, e0118199.
  • Robinson, P. L. (1976). How Sphenodon and Uromastyx grow their teeth and use them. In A. d’A. Bellairs, & C. B. Cox (Eds.), Morphology and Biology of Reptiles (Linnean Society Symposium Series Number 3). Academic Press, London, pp. 43–64.
  • Rossmann, T. (2000). Osteologische Beschreibung von Geiseltaliellus longicaudus Kuhn, 1944 (Squamata: Iguanoidea) aus dem Mittleren Eozän der Fossillagerstätten Geiseltal und Grube Messel (Deutschland), mit einer Revision der Gattung Geiseltaliellus. Palaeontographica A, 258, 117–158.
  • Simões, T. R., Wilner, E., Caldwell, M. W., Weinschütz, L. C., & Kellner, A. W. A. (2015). A stem acrodontan lizard in the cretaceous of Brazil revises early lizard evolution in Gondwana. Nature Communications, 6, 8149.
  • Smith, A. G., Smith, D. G., & Funnell, B. M. (1994). Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press, 109 pp.
  • Smith, K. T. (2006). A diverse new assemblage of late Eocene wquamates (Reptilia) from the Caadron Formation of North Dakota, U.S.A. Palaeontologia Electronica, 9, 5A:44.
  • Smith, K. T. (2009a). Eocene lizards of the clade Geiseltaliellus from Messel and Geiseltal, Germany, and the early radiation of Iguanidae (Squamata: Iguania). Bulletin Yale Peabody Museum of Natural History, 50, 219–306.
  • Smith, K. T. (2009b). A new lizard assemblage from the earliest Eocene (zone Wa0) of the Bighorn Basin, Wyoming, USA: biogeography during the warmest interval of the Cenozoic. Journal of Systematic Palaeontology, 7, 299–358.
  • Smith, K. T. (2011a). On the phylogenetic affinity of the extinct acrodontan lizard Tinosaurus. Bonner Zoologische Monographien, 57, 9–28.
  • Smith, K. T. (2011b). The Evolution of Mid-latitude Faunas during the Eocene: Late Eocene Lizards of the Medicine Pole Hills Reconsidered. Bulletin of the Peabody Museum of Natural History, 52, 3–105.
  • Smith, K. T., Čerňanský, A., Scanferla, A., & Schaal, S. (2018). Lizards and snakes: warmth-loving sunbathers. In K. T, Smith, S. F. K. Schaal, & J. Habersetzer (Eds.), Messel, An Ancient Greenhouse Ecosystem. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp. 122–147.
  • Smith, K. T., & Scanferla, A. (2021). A nearly complete skeleton of the oldest definitive erycine boid (Messel, Germany). Geodiversitas, 43, 1–24.
  • Smith, K. T., Schaal, S., Sun, W., & Li, C. T. (2011). Acrodont iguanians (Squamata) from the middle Eocene of the Huadian Basin of Jilin Province, China, with a critique of the taxon “Tinosaurus”. Vertebrata PalAsiatica, 49, 69–84.
  • Smith, T., Kumar, K., Rana, R. S., Folie, A., Solé, F., Noiret, C., Steeman, T., Sahni A., & Rose, K. D. (2016). New early Eocene vertebrate assemblage from western India reveals a mixed fauna of European and Gondwana affinities. Geoscience Frontiers, 7, 969–1001.
  • Smith, T., Rose, K. D., & Gingerich, P. D. (2006). Rapid Asia-Europe-North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene-Eocene Thermal Maximum. Proceedings of the National Academy of Sciences of the United States of America, 103, 11223–11227.
  • Smith, T., & Smith, R. (1996). Synthèse des données actuelles sur les vertébrés de la transition Paléocène-Eocène de Dormaal (Belgique). Bulletin de la Société belge de Géologie, 104, 119–131.
  • Solé, F., Smith, R., Coillot, T., De Bast, E., & Smith, T. (2014). Dental and tarsal anatomy of ‘Miacis’ latouri and a phylogenetic analysis of the earliest carnivoraforms (Mammalia, Carnivoramorpha). Journal of Vertebrate Paleontology, 31, 1–21.
  • Spix, J.B. von. (1825). Animalia nova sive species nova lacertarum quas in itinere per Brasiliam annis MDCCCXVII–MDCCCXX jussu et auspicius Maximiliani Josephi I Bavariae Regis suscepto collegit et descripsit Dr. J.B. de Spix. Lipsiae: Monachii [Munich], T.O. Weigel, F.S. Hübschmanni, 26 pp.
  • Steurbaut, E., De Coninck, J., Roche, E., & Smith, T. (1999). The Dormaal Sands and the Paleocene/Eocene boundary in Belgium. Bulletin de la Société Géologique de France, 170, 217–227.
  • Sullivan, R. M., Augé, M. L., Wille, E., & Smith, R. (2012). A new glyptosaurine lizard from the earliest Eocene of Dormaal, Belgium. Bulletin de la Société géologique de France, 183, 629–635.
  • Tolley, K. A., & Herrel, A. (2013). The Biology of Chameleons. University of California Press, Berkeley and Los Angeles, 288 pp.
  • Torres-Carvajal, O., de Queiroz, K., & Schulte, J. A. II. (2020). “Iguanidae.” in Phylonyms: A Companion to the PhyloCode. In K. de Queiroz, P. D. Cantino, & J. A. Gauthier (Eds.), the Chemical Rubber Company (CRC) Press, Boca Raton, Florida, pp. 1159–1164.
  • Uetz, P., Freed, P., & Hošek, J. (2022). The Reptile Database. http://www.reptile-database.org. [accessed February 2022]
  • Wagner, P., Stanley, E. L., Daza, J. D., & Bauer, A. M. (2021). A new agamid lizard in mid-Cretaceous amber from northern Myanmar. Cretaceous Research, 124, 104813.
  • Whiteside, D. I. (1986). The head skeleton of the Rhaetian sphenodontid Diphydontosaurus avonis gen. et sp. nov. and the modernizing of a living fossil. Philosophical Transactions of the Royal Society B: Biological Sciences, 312, 379–430.
  • Wilson, J. D., Morris, A. J., Arroyo, B. E., Clark, S. C., & Bradbury, R. B. (1999). A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agriculture Ecosystems & Environment, 75, 13–30.
  • Zachos, J., Dickens G., & Zeebe, R. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–283.
  • Zheng, Y., & Wiens, J. J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution, 94, 537–547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.