149
Views
0
CrossRef citations to date
0
Altmetric
Best Practices

Protocol for electron backscatter diffraction (EBSD) analysis of fossil eggshells

ORCID Icon, ORCID Icon & ORCID Icon
Article: e2363210 | Received 28 Feb 2024, Accepted 16 May 2024, Published online: 04 Jul 2024

LITERATURE CITED

  • Atakul-Özdemir, A., Warren, X., Martin, P. G., Guizar-Sicairos, M., Holler, M., Marone, F., Martínez-Pérez, C., & Donoghue, P. C. J. (2021). X-ray nanotomography and electron backscatter diffraction demonstrate the crystalline, heterogeneous and impermeable nature of conodont white matter. Royal Society Open Science, 8(8), 202013. doi:10.1098/rsos.202013
  • Baba-Kishi, K. Z. (2002). Electron backscatter Kikuchi diffraction in the scanning electron microscope crystallographic analysis. Journal of Materials Science, 37(9), 1715–1746. doi:10.1023/A:1014964916670
  • Beausir, B., & Fundenberger, J.-J. (2017). ATEX: Analysis tools for electron and X-ray diffraction (Version 3.30) [Computer software]. http://www.atex-software.eu/.
  • Board, R. G., & Perrott, H. R. (1979). Vaterite, a constituent of the eggshells of the nonparasitic cuckoos, Guira guira and Crotophagi ani. Calcified Tissue International, 29(1), 63–69. doi:10.1007/BF02408056
  • Carpenter, K., & Alf, K. (1994). Global distribution of dinosaur eggs, nests, and babies. In K. Carpenter, K. F. Hirsch, & J. R. Horner (Eds.), Dinosaur eggs and babies (pp. 15–30). Cambridge University Press.
  • Chiang, P.-L., Tseng, Y.-C., Wu, H.-J., Tsao, S.-H., Wu, S.-P., Wang, W.-C., Hsieh, H.-I., & Juang, J.-Y. (2021). Elastic moduli of avian eggshell. Biology, 10(10), 989. doi:10.3390/biology10100989
  • Choi, S., Barta, D. E., Moreno-Azanza, M., Kim, N.-H., Shaw, C. A., & Varricchio, D. J. (2022). Microstructural description of the maniraptoran egg Protoceratopsidovum. Papers in Palaeontology, 8(2), e1430. doi:10.1002/spp2.1430
  • Choi, S., Han, S., Kim, N.-H., & Lee, Y.-N. (2018). A comparative study of eggshells of Gekkota with morphological, chemical compositional and crystallographic approaches and its evolutionary implications. PLoS ONE, 13(6), e1099496.
  • Choi, S., Han, S., & Lee, Y.-N. (2019). Electron backscatter diffraction (EBSD) analysis of maniraptoran eggshells with important implications for microstructural and taphonomic interpretations. Palaeontology, 62(5), 777–803. doi:10.1111/pala.12427
  • Choi, S., Hauber, M. E., Legendre, L. J., Kim, N.-H., Lee, Y.-N., & Varricchio, D. J. (2023). Microstructural and crystallographic evolution of palaeognath (Aves) eggshells. eLife, 11, e81092. doi:10.7554/eLife.81092
  • Choi, S., Kim, N.-H., Kim, H.-I., Kweon, J. J., Lee, S. K., Zhang, S., & Varricchio, D. J. (2022). Preservation of aragonite in Late Cretaceous (Campanian) turtle eggshell. Palaeogeography, Palaeoclimatology, Palaeoecology, 585, 110741. doi:10.1016/j.palaeo.2021.110741
  • Choi, S., Kim, H., Paik, I., Park, Y., Jung, H., & Xu, X. (2022). Turtle eggs from the Lower Cretaceous Hasandong Formation (South Korea) with relict aragonite under significant thermal maturity. Journal of Vertebrate Paleontology, 42(4), e2183866. doi:10.1080/02724634.2023.2183866
  • Choi, S., & Lee, Y.-N. (2019). Possible Late Cretaceous dromaeosaurid eggshells from South Korea: A new insight into dromaeosaurid oology. Cretaceous Research, 103, 104167. doi:10.1016/j.cretres.2019.06.013
  • Choi, S., Lee, S. K., Kim, N.-H., Kim, S., & Lee, Y.-N. (2020). Raman spectroscopy detects amorphous carbon in an enigmatic egg from the Upper Cretaceous Wido Volcanics of South Korea. Frontiers in Earth Science, 7, 349. doi:10.3389/feart.2019.00349
  • Choi, S., Moreno-Azanza, M., Csiki-Sava, Z., Prondvai, E., & Lee, Y.-N. (2020). Comparative crystallography suggests maniraptoran theropod affinities for latest Cretaceous European ‘geckoid’ eggshell. Papers in Palaeontology, 6(2), 265–292. doi:10.1002/spp2.1294
  • Choi, S., Park, Y., Kweon, J. J., Kim, S., Jung, H., Lee, S. K., & Lee, Y.-N. (2021). Fossil eggshells of amniotes as a paleothermometry tool. Palaeogeography, Palaeoclimatology, Palaeoecology, 571, 110376. doi:10.1016/j.palaeo.2021.110376
  • Cusack, M. (2016). Biomineral electron backscatter diffraction for palaeontology. Palaeontology, 59(2), 171–179. doi:10.1111/pala.12222
  • Dalbeck, P., & Cusack, M. (2006). Crystallography (electron backscatter diffraction) and chemistry (electron probe microanalysis) of the avian eggshell. Crystal Growth & Design, 6(11), 2558–2562. doi:10.1021/cg068008t
  • Deering, J., Nelea, V., & McKee, M. D. (2024). Multiscale mineralization in the leopard gecko eggshell. Advanced Functional Materials, 34(24), 2316422.
  • Demarchi, B., Stiller, J., Grealy, A., Mackie, M., Deng, Y., Gilbert, T., Clarke, J., Legendre, L. J., Boano, R., Sicheritz-Pontén, T., Magee, J., Zhang, G., Bunce, M., Collins, M. J., & Miller, G. (2022). Ancient proteins resolve controversy over the identity of Genyornis eggshell. Proceedings of the National Academy of Sciences, 119(43), e2109326119. doi:10.1073/pnas.2109326119
  • Dorozhkin, S. V. (2010). Amorphous calcium (ortho)phosphates. Acta Biomaterialia, 6(12), 4457–4475. doi:10.1016/j.actbio.2010.06.031
  • Downs, R. T., & Hall-Wallace, M. (2003). The American Mineralogist crystal structure database. American Mineralogist, 88(1), 247–250.
  • Eagle, R. A., Enriquez, M., Grellet-Tinner, G., Pérez-Huerta, A., Hu, D., Tütken, T., Montanari, S., Loyd, S. J., Ramirez, P., Tripati, A. K., Kohn, M. J., Cerling, T. E., Chiappe, L. M., & Eiler, J. M. (2015). Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs. Nature Communications, 6(1), 8296. doi:10.1038/ncomms9296
  • Ferrill, D. A., Morris, A. P., Evans, M. A., Burkhard, M., Groshong R. H., Jr., & Onasch, C. M. (2004). Calcite twin morphology: A low-temperature deformation geothermometer. Journal of Structural Geology, 26(8), 1521–1529. doi:10.1016/j.jsg.2003.11.028
  • Gautron, J., Stapane, L., Le Roy, N., Nys, Y., Rodriguez-Navarro, A. B., & Hincke, M. T. (2021). Avian eggshell biomineralization: An update on its structure, mineralogy and protein tool kit. BMC Molecular and Cell Biology, 22(1), 11. doi:10.1186/s12860-021-00350-0
  • Grellet-Tinner, G., Lindsay, S., & Thompson, M. B. (2017). The biomechanical, chemical and physiological adaptations of the eggs of two Australian megapodes to their nesting strategies and their implications for extinct titanosaur dinosaurs. Journal of Microscopy, 267(2), 237–249. doi:10.1111/jmi.12572
  • Grellet-Tinner, G., Murelaga, X., Larrasoaña, J. C., Silveira, L. F., Olivares, M., Ortega, L. A., Trimby, P. W., & Pascual, A. (2012). The first occurrence in the fossil record of an aquatic avian twig-nest with Phoenicopteriformes eggs: Evolutionary implications. PLoS ONE, 7(10), e46972. doi:10.1371/journal.pone.0046972
  • Grellet-Tinner, G., Sim, C. M., Kim, D. H., Trimby, P., Higa, A., An, S. L., Oh, H. S., Kim, T., & Kardjilov, N. (2011). Description of the first lithostrotian titanosaur embryo in ovo with Neutron characterization and implications for lithostrotian Aptian migration and dispersion. Gondwana Research, 20(2-3), 621–629. doi:10.1016/j.gr.2011.02.007
  • Grellet-Tinner, G., Spooner, N. A., & Worthy, T. H. (2016). Is the “Genyornis” egg of a mihirung or another extinct bird from the Australian dreamtime? Quaternary Science Reviews, 133, 147–164. doi:10.1016/j.quascirev.2015.12.011
  • Han, F., Yu, Y., Zhang, S., Zeng, R., Wang, X., Cai, H., Wu, T., Wen, Y., Cai, S., Li, C., Wu, R., Zhao, Q., & Xu, X. (2024). Exceptional Early Jurassic fossils with leathery eggs shed light on dinosaur reproductive biology. National Science Review, 11(6), nwad258.
  • He, Q., Zhang, S., Xing, L., Jiang, Q., Wang, X., Pan, Z., & Hu, Y. (2019). A new oospecies of Similifaveoloolithidae from the Xiuning Basin, Late Cretaceous of Anhui, China. Historical Biology, 31(2), 168–176. doi:10.1080/08912963.2017.1351440
  • Hirsch, K. F. (1983). Contemporary and fossil chelonian eggshells. Copeia, 1983(2), 382–397. doi:10.2307/1444381
  • Hirsch, K. F., & Quinn, B. (1990). Eggs and eggshell fragments from the Upper Cretaceous Two Medicine Formation of Montana. Journal of Vertebrate Paleontology, 10(4), 491–511. doi:10.1080/02724634.1990.10011832
  • Jain, S., Bajpai, S., Kumar, G., & Pruthi, V. (2016). Microstructure, crystallography and diagenetic alteration in fossil ostrich eggshells from Upper Palaeolithic sites of Indian peninsular region. Micron, 84, 72–78. doi:10.1016/j.micron.2016.02.012
  • Kikuchi, S. (1928). Diffraction of cathode rays by mica. Japanese Journal of Physics, 5(3061), 83–96.
  • Kim, N.-H., Choi, S., Kim, S., & Lee, Y.-N. (2019). A new faveoloolithid oogenus from the Wido Volcanics (Upper Cretaceous), South Korea and a new insight into the oofamily Faveoloolithidae. Cretaceous Research, 100, 145–163. doi:10.1016/j.cretres.2019.04.001
  • Koblischka-Veneva, A., Koblischka, M. R., Schmauch, J., & Hannig, M. (2018). Human dental enamel: A natural nanotechnology masterpiece investigated by TEM and t-EBSD. Nano Research, 11(7), 3911–3921. doi:10.1007/s12274-018-1968-1
  • Kundrát, M., & Cruickshank, A. R. I. (2022). New information on multispherulitic dinosaur eggs: Faveoloolithidae and Dendroolithidae. Historical Biology, 34(6), 1072–1084. doi:10.1080/08912963.2021.1961764
  • López, A. V., Choi, S., Park, Y., Hanley, D., Lee, J.-W., Honza, M., & Bolmaro, R. E. (2023). Avian obligate brood parasitic lineages evolved variable complex polycrystalline structures to build tougher eggshells. iScience, 26(12), 108552. doi:10.1016/j.isci.2023.108552
  • Mikhailov, K. E. (1997). Avian eggshells: An atlas of scanning electron micrographs. British Ornithologists Club Occasional Publications.
  • Mikhailov, K. E., & Zelenkov, N. (2020). The late Cenozoic history of the ostriches (Aves: Struthionidae), as revealed by fossil eggshell and bone remains. Earth-Science Reviews, 208, 103270. doi:10.1016/j.earscirev.2020.103270
  • Moreno-Azanza, M., Bauluz, B., Canudo, J. I., Gasca, J. M., & Torcida Fernández-Baldor, F. (2016). Combined use of electron and light microscopy techniques reveals false secondary shell units in Megaloolithidae eggshells. PLoS ONE, 11(5), e0153026. doi:10.1371/journal.pone.0153026
  • Moreno-Azanza, M., Bauluz, B., Canudo, J. I., & Mateus, O. (2017). The conservative structure of the ornithopod eggshell: Electron backscatter diffraction characterization of Guegoolithus turolensis from the Early Cretaceous of Spain. Journal of Iberian Geology, 43(2), 235–243. doi:10.1007/s41513-017-0019-1
  • Moreno-Azanza, M., Díaz-Berenguer, E., Silva-Casal, R., Pérez-García, A., Badiola, A., & Canudo, J. I. (2021). Recognizing a lost nesting ground: First unambiguous Testudines eggshells from the Eocene, associated with the pleurodiran Eocenochelus (Huesca, Northern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 576, 110526. doi:10.1016/j.palaeo.2021.110526
  • Moreno-Azanza, M., Mariani, E., Bauluz, B., & Canudo, J. I. (2013). Growth mechanisms in dinosaur eggshells: An insight from electron backscatter diffraction. Journal of Vertebrate Paleontology, 33(1), 121–130. doi:10.1080/02724634.2012.710284
  • Nishikawa, S., & Kikuchi, S. (1928). Diffraction of cathode rays by calcite. Nature, 122(3080), 726. doi:10.1038/122726a0
  • Oser, S. E., Chin, K., Sertich, J. J. W., Varricchio, D. J., Choi, S., & Rifkin, J. (2021). Tiny, ornamented eggs and eggshell from the Upper Cretaceous of Utah represent a new ootaxon with theropod affinity. Scientific Reports, 11(1), 10021. doi:10.1038/s41598-021-89472-1
  • Parmentier, E., Cloots, R., Warin, R., & Henrist, C. (2007). Otolith crystals (in Carapidae): Growth and habit. Journal of Structural Biology, 159(3), 462–473. doi:10.1016/j.jsb.2007.05.006
  • Pérez-Huerta, A., & Cusack, M. (2009). Optimizing electron backscatter diffraction of carbonate biominerals—Resin type and carbon coating. Microscopy and Microanalysis, 15(3), 197–203. doi:10.1017/S1431927609090370
  • Pérez-Huerta, A., Coronado, I., & Hegna, T. A. (2018). Understanding biomineralization in the fossil record. Earth-Science Reviews, 179, 95–122. doi:10.1016/j.earscirev.2018.02.015
  • Pérez-Huerta, A., Cusack, M., & England, J. (2007). Crystallography and diagenesis in fossil craniid brachiopods. Palaeontology, 50(4), 757–763. doi:10.1111/j.1475-4983.2007.00688.x
  • Pérez-Huerta, A., Cusack, M., & Méndez, C. A. (2012). Preliminary assessment of the use of electron backscatter diffraction (EBSD) in conodonts. Lethaia, 45(2), 253–258. doi:10.1111/j.1502-3931.2011.00277.x
  • Prior, D. J., Boyle, A. P., Brenker, F., Cheadle, M. C., Day, A., Lopez, G., Peruzzo, L., Potts, G. J., Reddy, S., Spiess, R., Timms, N. E., Trimby, P., Wheeler, J., & Zetterström, L. (1999). The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist, 84(11–12), 1741–1759. doi:10.2138/am-1999-11-1204
  • Prior, D. J., Mariani, E., & Wheeler, J. (2009). EBSD in the Earth sciences: Applications, common practice, and challenges. In A. J. Schwartz, M. Kumar, B. L. Adams, & D. P. Field (Eds.), Electron backscatter diffraction in materials science (pp. 345–360). Springer.
  • Quinn, B. (1994). Fossilized eggshell preparation. In P. Leiggi, & P. May (Eds.), Vertebrate paleontological techniques, vol. 1 (pp. 146–153). Cambridge University Press.
  • Rodriguez-Navarro, A., Kalin, O., Nys, Y., & Garcia-Ruiz, J. M. (2002). Influence of the microstructure on the shell strength of eggs laid by hens of different ages. British Poultry Science, 43(3), 395–403. doi:10.1080/00071660120103675
  • Schulz-Mirbach, T., Götz, A., Griesshaber, E., Plath, M., & Schmahl, W. W. (2013). Texture and nano-scale internal microstructure of otoliths in the Atlantic molly, Poecilia mexicana: A high-resolution EBSD study. Micron, 51, 60–69. doi:10.1016/j.micron.2013.07.001
  • Stolarski, J., Drake, J., Coronado, I., Vieira, A. R., Radwańska, U., Heath-Heckman, E. A. C., Mazur, M., Guo, J., & Meibom, A. (2023). First paleoproteome study of fossil fish otoliths and the pristine preservation of the biomineral crystal host. Scientific Reports, 13(1), 3822. doi:10.1038/s41598-023-30537-8
  • Termine, J. D., & Posner, A. S. (1967). Amorphous/crystalline interrelationships in bone mineral. Calcified Tissue Research, 1(1), 8–23. doi:10.1007/BF02008070
  • Uematsu, R., Tanaka, K., Kozu, S., Isaji, S., & Shimojima, S. (2023). Fossil eggshells from the Early Cretaceous Okurodani Formation, northern central Japan. Historical Biology, 35(12), 2396–2407. doi:10.1080/08912963.2022.2142910
  • Van Straelen, V. (1925). The microstructure of the dinosaurian egg-shells from the Cretaceous beds of Mongolia. American Museum Novitates, 173, 1–4.
  • Wu, H.-J., Tseng, Y.-C., Tsao, S.-H., Chiang, P.-L., Tai, W.-Y., Hsieh, H.-I., Yu, H.-T., & Juang, J.-Y. (2023). A comparative study on the microstructures, mineral content, and mechanical properties of non-avian reptilian eggshells. Biology, 12(5), 688. doi:10.3390/biology12050688
  • Wu, R., Niu, K., Zhang, S., Xue, Y., & Han, F. (2024). A new ootype of putative dromaeosaurid eggs from the Upper Cretaceous of southern China. Cretaceous Research, 161, 105909. https://doi.org/10.1016/j.cretres.2024.105909
  • Xu, L., Xie, J., Zhang, S., Choi, S., Kim, N.-H., Gao, D., Jin, X., Jia, S., & Gao, Y. (2022). Fossil turtle eggs from the Upper Cretaceous Gaogou Formation, Xiaguan-Gaoqiu Basin, Neixiang County, Henan Province, China: Interpretation of the transformation from aragonite to calcite in fossil turtle eggshell. Cretaceous Research, 134, 105166. doi:10.1016/j.cretres.2022.105166
  • Zhu, X., Wang, Q., & Wang, X. (2024). Electron backscatter diffraction (EBSD) study of elongatoolithid eggs from China with microstructural and parataxonomic implications. Paleobiology, 50(2), 330–345. https://doi.org/10.1017/pab.2024.9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.