81
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Accurate Solution of Magnetic Field Integral Equation with Higher-Order Basis Functions and Non-Uniform Rational B-Splines Modeling

, , &
Pages 474-487 | Received 15 Jan 2015, Accepted 29 May 2015, Published online: 02 Oct 2015

References

  • Blackford, L. S. n.d.ScaLAPACK tutorial. Available on-line at http://www.netlib.org/scalapck/ ( accessed 13 September 2015).
  • Chew, W. C., C. P. Davis, K. F.Warnick, Z. P. Nie, J. Hu, S. Yan, & L. Gürel. 2008. EFIE and MFIE, why the difference? Proceedings of IEEE Antennas and Propagation Society International Symposium, San Diego, CA, 5–11 July:1-2.
  • Ding, W., & G. F. Wang. 2009. Treatment of singular integrals on generalized curvilinear parametric quadrilaterals in higher order method of moments. IEEE Antennas Wirel. Propagat. Lett. 8:1310–1313.
  • Djordjevic, M., & B. M. Notaros. 2004. Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers. IEEE Trans. Antennas Propagat. 52:2118–2129.
  • Duffy, M. G. 1982. Quadrature over a pyramid of cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal. 19:1260–1262.
  • Ergül, Ö., & L. Gürel. 2004. Improving the accuracy of the MFIE with the choice of basis functions. Proceedings of IEEE AP-S International Symposium and URSI Radio Science Meeting, Monterey, CA, 20–26 June, 3389–3392.
  • Ergül, Ö., & L. Gürel. 2005. Solid-angle factor in the magnetic-field integral equation. Microw. Opt. Technol. Lett. 45:452–456.
  • Ergül, Ö., & L. Gürel. 2009. Discretization error due to the identity operator in surface integral equations. Comput. Phys. Commun. 180:1746–1752.
  • Fink, P. W., & M. A. Khayat. 2013. A simple transformation for the numerical evaluation of near strongly singular integrals. IEEE Antennas Wirel. Propag. Lett. 12:225–228.
  • Gürel, L., & Ö. Ergül. 2005. Singularity of the magnetic-field integral equation and its extraction. IEEE Antennas Wirel. Propagat. Lett. 4:229–232.
  • Hodges, R. E., & Y. Rahmat-Samii. 1997. The evaluation of MFIE integrals with the use of vector triangle basis functions. Microw. Opt. Technol. Lett. 14:9–14.
  • Nair, N. V., A. J. Pray, J. Villa-Giron, B. Shanker, & D. R. Wilton. 2013. A singularity cancellation technique for weakly singular integrals on higher order surface descriptions. IEEE Trans. Antennas Propagat. 61:2347–2352.
  • Poggio, A. J., & E. K. Miller. 1973. Integral equation solutions of three dimensional scattering problems. In Computer techniques for electromagnetics, R. Mittra, ed. Oxford, UK: Pergamon Press.
  • Polimeridis, A. G., F. Vipiana, J. R. Mosig, & D. R. Wilton. 2013. DIRECTFN: Fully numerical algorithms for high precision computation of singular integrals in Galerkin SIE methods. IEEE Trans. Antennas Propagat. 61:3112–3122.
  • Rao, S. M., D. R. Wilton, & A. W. Glisson. 1982. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propagat. 30:409–418.
  • Saad, Y. 1996. Iterative methods for sparse linear systems. Boston, MA: PWS Publishing, 236:158–173.
  • Shi, F. Z. 2001. Computer-aided geometric design and nonuniform rational B-spline. Higher Education Express, New York, 71–73.
  • Tasic, M. S., & B. M. Kolundzija. 2011. Efficient analysis of large scatterers by physical optics driven method of moments. IEEE Trans. Antennas Propagat. 59:2905–2915.
  • Ubeda, E., & J. M. Rius. 2006. Field- and source-domain integral swapping in the accurate computation of MoM MFIE formulation with low-order curl- and divergence-conforming basis functions. IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, 9–14 July, 1917–1920.
  • Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, & C. M. Butler. 1984. Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains. IEEE Trans. Antennas Propagat. 32:276–281.
  • Yan, S., J. M. Jin, & Z. P. Nie. 2011. Improving the accuracy of the second-kind Fredholm integral equations by using the Buffa-Christiansen functions. IEEE Trans. Antennas Propagat. 59:1299–1310.
  • Yuan, H. B., N. Wang, & C. H. Liang. 2009. Combining the higher order method of moments with geometric modeling by NURBS surfaces. IEEE Trans. Antennas Propagat. 57:3558–3563.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.