154
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization and measurement of nanostructured copper-based electromagnetic wave absorber

, , , , &
Pages 313-321 | Received 23 Nov 2019, Accepted 15 Apr 2020, Published online: 18 Jun 2020

References

  • Bala, R., and A. Marwaha. 2016. Characterization of graphene for performance enhancement of patch antenna in THz region. Optik 127:2089–93. doi:10.1016/j.ijleo.2015.11.029.
  • Batrakov, K., P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. H. Lambin, T. Kaplas, and Y. Svirko. 2014. Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Nature Scientific Reports 4:1–13.
  • Da, Y., X.-C. Wei, and Y.-L. Xu. 2017. Tunable microwave absorber based on patterned graphene. IEEE Transactions on Microwave Theory and Techniques 65:2819–26. doi:10.1109/TMTT.2017.2678501.
  • Dhanabalan, S. C., J. S. Ponraj, Q. Bao, and H. Zhang:. 2017. Present perspectives of broadband photo-detectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale 8:1–46.
  • Du, Y., W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, and P. Xu:. 2014. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Applied Materials & Interfaces 6:12997–3006. doi:10.1021/am502910d.
  • Kunal Pubby, S. S., S. M. Meena, S. Yusuf, and B. Narang. 2018. Cobalt substituted nickel ferrites via Pechini’s sol–gel citrate route X-band electromagnetic characterization. Journal of Magnetism and Magnetic Materials 466:430–45. doi:10.1016/j.jmmm.2018.07.038.
  • Liu, T., P. H. Zhou, J. L. Xie, and L. J. Deng:. 2002. Electromagnetic and absorption properties of urchinlike Ni composites at microwave frequencies. Applied Physics Letters 3:093905–17.
  • Liu, Y., X. Liu, and X. Wang. 2013. Double-layer microwave absorber based on CoFe2O4 ferrite and carbonyl iron composites. Elsevier, Journal of Alloys and Compounds 584:249–53. doi:10.1016/j.jallcom.2013.09.049.
  • Nicolson, A. M., and G. F. Ross:. 1970. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Transactions on Instrumentation and Measurement 19:377–82. doi:10.1109/TIM.1970.4313932.
  • PatriziaSavi, M., M. G. Miscuglio, and A. Tagliaferro. 2014. Analysis of microwave absorbing properties of epoxy MWCNT composites. Progress in Electromagnetics Research Letters 44:63–72. doi:10.2528/PIERL13102803.
  • Quan, L., F. X. Qin, D. Estevez, H. Wang, and H. X. Peng:. 2017. Magnetic graphene for microwave absorbing application; Towards the lightest graphene-based absorber. Carbon 125:630–39. doi:10.1016/j.carbon.2017.09.101.
  • Rubrice, K., X. Castel, M. Himdi, and P. Parneix. 2016. Dielectric characteristics and microwave absorption of graphene composite materials. Journal of Materials 825:1–10.
  • Saville, P. 2005. Review of radar absorbing materials, 1–46. Canada – Atlantic: Defence R&D.
  • Singh, A. K., M. P. Abegaonkar, and S. K. Koul. 2018. Dual- and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability. IEEE Transactions on Electromagnetic Compatibility 61: 1–9.
  • Teber, A., K. Cil, T. Yilmaz, B. Eraslan, D. Uysal, A. H. B. Gokce Surucu, and R. Bansal. 2017. Manganese and zinc spinel ferrites blended with multi-walled carbon nanotubes as microwave absorbing materials. Aerospace 1:1–18.
  • Theivasanthi, T., and M. Alagar. 2010. X-Ray diffraction studies of copper nanopowder. Materials Science, Physics 1:112–19.
  • Vasquez, H., L. Espinoza, K. Lozano, H. Foltz, and S. Yang. 2009. Simple device for electromagnetic interference shielding effectiveness measurement. IEEE EMC Society Newsletter 220:62–68.
  • Wang, Y., L. Tingxi, L. Zhao, H. Zuwang, and Y. Gu. 2011. Research progress on nanostructured radar absorbing materials. Energy and Power Engineering 3:580–84. doi:10.4236/epe.2011.34072.
  • Xin, G., H. Da-Wei, W. Yong-Sheng, Z. Wen, Z. Yi-Kang, and L. Shu-Lei. 2015. Synthesis and microwave absorption properties of Graphene–Oxide (GO)/polyaniline nanocomposite with Fe3O4 particles. Chinese Physics B 24:1–5.
  • Xu, Y., G. Shen, H. Wu, B. Liu, X. Fang, D. Zhang, and J. Zhu. 2017. Double-layer microwave absorber based on nanocrystalline CoFe2O4 and CoFe2O4/PANI multi-core/shell composites. Materials Science-Poland 35:94–110. doi:10.1515/msp-2017-0010.
  • Zhao, X., Z. Zhang, L. Wang, X. Kai, Q. Cao, D. Wang, Y. Yang, and Y. Du. 2013. Excellent microwave absorption property of Graphene-coated Fe nanocomposites. Nature Scientific Report 3:1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.