107
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Design and realization of frequency and mode electronically reconfigurable metamaterial stopband filter for wireless communication systems

, , , &
Pages 266-277 | Received 15 Mar 2022, Accepted 22 Jun 2022, Published online: 08 Aug 2022

References

  • Al-Yasir, Y. I. A., N. O. Parchin, R. A. Abd-Alhameed, A. M. Abdulkhaleq, and J. M. Noras. 2019. Recent progress in the design of 4G/5G reconfigurable filters. Electron 8:114. doi:10.3390/electronics8010114.
  • Belkadi, B., Z. Mahdjoub, M. L. Seddiki, and M. Nedil. 2018. A selective frequency reconfigurable bandstop metamaterial filter for WLAN applications. Turkish J Electr Eng Comput Sci 26:2976–85.
  • Boubakar, H., M. Abri, and M. Benaissa. 2020. Electronically switchable SIW band-pass filter based on S-CSRR using PIN diodes for WI-FI applications. Lect Notes Networks Syst 174:738–46.
  • Boubakar, H., M. Abri, and M. Benaissa. 2021a. Electronically reconfigurable HM-SIW band-pass filter based on new CSRR design using pin diodes. J Informatics Math Sci 13:59–69.
  • Boubakar, H., M. Abri, and M. Benaissa. 2021b. Design of complementary hexagonal metamaterial based HMSIW band-pass filter and reconfigurable SIW filter using PIN diodes. Advanced Electromagnetics 10 (2):19–26. doi:10.7716/aem.v10i2.1596.
  • Boubakar, H., M. Abri, and M. Benaissa. 2021c. Development and characterisation of compact wide-band rejection metamaterial filters using triangular and elliptic split-ring resonators. Palestinian International Conference on Information and Communication Technology (PICICT). IEEE. Palestine. 135–39.
  • Ghaffar, A., X. J. Li, W. A. Awan, and N. Hussain. 2021. Reconfigurable Antenna: Analysis and Applications. Signals Commun Technol, 269–323.
  • Goussetis, G., R. Lopez-Villarroya, E. Doumanis, O. S. Arowolo, and J. S. Hong. 2011. Quality factor of E-plane periodically loaded waveguide resonators and filter applications. IET Microwaves, Antennas Propag 5:818–22. doi:10.1049/iet-map.2010.0396.
  • Han, Z., K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi. 2015. Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array. IEEE J Sel Top Quantum Electron 21:114–22. doi:10.1109/JSTQE.2014.2378591.
  • Marqués, R., F. Medina, and R. Rafii-El-Idrissi. 2002. Role of bianisotropy in negative permeability and left-handed metamaterials. Phys Rev B 65:144440. doi:10.1103/PhysRevB.65.144440.
  • Marqués, R., F. Mesa, J. Martel, and F. Medina. 2003. Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design - Theory and experiments. IEEE Trans Antennas Propag 51:2572–81. doi:10.1109/TAP.2003.817562.
  • Mirebrahimi, S. M., M. Dousti, and S. Afrang. 2021. MEMS tunable filters based on DGS and waveguide structures: A literature review. Analog Integr Circuits Signal Process 1081 (108):141–64. doi:10.1007/s10470-021-01862-7.
  • Naqui, J., L. Su, J. Mata, and F. Martín. 2015. Recent advances in the modeling of transmission lines loaded with split ring resonators. Int J Antennas Propag. doi:10.1155/2015/792750.
  • Nicolson, A. M., and G. F. Ross. 1970. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans Instrum Meas 19:377–82. doi:10.1109/TIM.1970.4313932.
  • Rajkumar, R., and K. Usha Kiran. 2016. A compact metamaterial multiband antenna for WLAN/WiMAX/ITU band applications. AEU - Int J Electron Commun 70:599–604. doi:10.1016/j.aeue.2016.01.025.
  • Sam, W. Y., and Z. Z. bin. 2018. Design of reconfigurable integrated substrate integrated waveguide (SIW) filter and antenna using multilayer approach. Int J RF Microw Comput Eng 28:e21561.
  • Sekar, V., M. Armendariz, and K. Entesari. 2011. A 1.2-1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter. IEEE Trans Microw Theory Tech 59:866–76. doi:10.1109/TMTT.2011.2109006.
  • Shahid, I., D. N. Thalakotuna, D. K. Karmokar, S. J. Mahon, and M. Heimlich. 2021. A compact reconfigurable 1-D periodic structure in GaAs MMIC with stopband switching, dual-band operation and tuning capabilities. IEEE Access 9:142084–94. doi:10.1109/ACCESS.2021.3119668.
  • Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz. 2000. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184. doi:10.1103/PhysRevLett.84.4184.
  • Smith, D. R., S. Schultz, P. Markoš, and C. M. Soukoulis. 2002. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65:195104. doi:10.1103/PhysRevB.65.195104.
  • Song, J.-P., X.-Y. Wang, F. Wei, and X.-W. Shi. 2018. Electronically reconfigurable varactor-loaded HMSIW bandpass filter. Frequenz 72:227–30. doi:10.1515/freq-2016-0345.
  • Tsai, H. J., B. C. Huang, N. W. Chen, and S. K. Jeng. 2014. A reconfigurable bandpass filter based on a varactor-perturbed, T-shaped dual-mode resonator. IEEE Microw Wirel Components Lett 24:297–99. doi:10.1109/LMWC.2014.2306893.
  • Tu, Y., Y. I. A. Al-Yasir, N. O. Parchin, A. M. Abdulkhaleq, and R. A. Abd-Alhameed. 2020. A survey on reconfigurable microstrip filter–Antenna integration: recent developments and challenges. Electron 9:1249. doi:10.3390/electronics9081249.
  • Vicente, A. N., G. M. I. Dip, and C. Junqueira (2011) The step by step development of NRW method. In: SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf. Proc, Natal, Brazil. pp. 738–42
  • Watertown, M. 1992. The pin diode circuit designers’ handbook. Santa-Ana, Calif: Microsemi Corp.
  • Wei, Z., T. Yang, P. L. Chi, X. Zhang, and R. Xu. 2021. A 10.23-15.7-GHz varactor-tuned microstrip bandpass filter with highly flexible reconfigurability. IEEE Trans Microw Theory Tech 69:4499–509. doi:10.1109/TMTT.2021.3098835.
  • Weir, W. B. 1974. Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc IEEE 62:33–36. doi:10.1109/PROC.1974.9382.
  • Xiang, Q.-Y., Q.-Y. Feng, X.-G. Huang, and D.-H. Jia. 2012. Substrate integrated waveguide filters and mechanical/electrical reconfigurable half-mode substrate integrated waveguide filters. J Electromagn Waves Appl. 101080/092050712012711526. 26:1756–66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.