596
Views
12
CrossRef citations to date
0
Altmetric
8th International Conference for Conveying and Handling of Particulate Solids (CHoPS2015)

Gas-phase manufacturing of nanoparticles: Molecular dynamics and mesoscale simulations

&

References

  • Akhtar, M. K., G. Lipscomb, and S. E. Pratsinis. 1994. Monte Carlo simulation of particle coagulation and sintering. Aerosol Science and Technology 21 (1):83–93.doi:10.1080/02786829408959698.
  • Arabi-Katbi, O. I., S. E. Pratsinis, P. W. Morrison, and C. M. Megaridis. 2001. Monitoring the flame synthesis of TiO2 particles by in-situ FTIR spectroscopy and thermophoretic sampling. Combustion and Flame 124 (4):560–72.doi:10.1016/s0010-2180(00)00227-3.
  • Arcidiacono, S., N. R. Bieri, D. Poulikakos, and C. P. Grigoropoulos. 2004. On the coalescence of gold nanoparticles. International Journal of Multiphase Flow 30 (7):979–94.doi:10.1016/j.ijmultiphaseflow.2004.03.006.
  • Ball, R. C., and R. Jullien. 1984. Finite size effects in cluster-cluster aggregation. Journal de Physique Letters 45 (21):L1031–35.doi:10.1051/jphyslet:0198400450210103100.
  • Barnard, A. S. 2010. Modelling of nanoparticles: Approaches to morphology and evolution. Reports on Progress in Physics 73 (8):086512.doi:10.1088/0034-4885/73/8/086502.
  • Buesser, B., A. J. Gröhn, and S. E. Pratsinis. 2011. Sintering rate and mechanism of TiO2 nanoparticles by molecular dynamics. The Journal of Physical Chemistry C 115 (22):11030–35.doi:10.1021/jp2032302.
  • Buesser, B., and S. E. Pratsinis. 2011. Design of gas‐phase synthesis of core‐shell particles by computational fluid–aerosol dynamics. AIChE Journal 57 (11):3132–42.doi:10.1002/aic.12512.
  • Buesser, B., and S. E. Pratsinis. 2012. Design of nanomaterial synthesis by aerosol processes. Annual Review of Chemical and Biomolecular Engineering 3:103–27.doi:10.1146/annurev-chembioeng-062011-080930.
  • Buesser, B., and S. E. Pratsinis. 2015. Morphology and crystallinity of coalescing nanosilver by molecular dynamics. The Journal of Physical Chemistry C 119 (18):10116–22.doi:10.1021/acs.jpcc.5b01491.
  • Buffat, P., and J.-P. Borel. 1976. Size effect on the melting temperature of gold particles. Physical Review A 13 (6):2287–98.doi:10.1103/physreva.13.2287.
  • Camenzind, A., H. Schulz, A. Teleki, G. Beaucage, T. Narayanan, and S. E. Pratsinis. 2008. Nanostructure evolution: from aggregated to spherical SiO2 particles made in diffusion flames. European Journal of Inorganic Chemistry 2008 (6):911–18.doi:10.1002/ejic.200701080.
  • Eggersdorfer, M. L., A. J. Gröhn, C. M. Sorensen, P. H. McMurry, and S. E. Pratsinis. 2012. Mass-mobility characterization of flame-made ZrO2 aerosols: Primary particle diameter and extent of aggregation. Journal of Colloid and Interface Science 387 (1):12–13.doi:10.1016/j.jcis.2012.07.078.
  • Eggersdorfer, M. L., D. Kadau, H. J. Herrmann, and S. E. Pratsinis. 2010. Fragmentation and restructuring of soft-agglomerates. Journal of Colloid and Interface Science 342 (2):261–68.
  • Eggersdorfer, M. L., D. Kadau, H. J. Herrmann, and S. E. Pratsinis. 2011. Multiparticle sintering dynamics: From fractal-like aggregates to compact structures. Langmuir 27 (10):6358–67.doi:10.1016/j.jcis.2009.10.062.
  • Eggersdorfer, M. L., D. Kadau, H. J. Herrmann, and S. E. Pratsinis. 2012. Aggregate morphology evolution by sintering: Number and diameter of primary particles. Journal of Aerosol Science 46:7–19.doi:10.1016/j.jaerosci.2011.11.005.
  • Eggersdorfer, M. L., and S. E. Pratsinis. 2013. Restructuring of aggregates and their primary particle size distribution during sintering. AIChE Journal 59 (4):1118–26.doi:10.1002/aic.14043.
  • Eggersdorfer, M. L., and S. E. Pratsinis. 2014. Agglomerates and aggregates of nanoparticles made in the gas phase. Advanced Powder Technology 25 (1):71–90.doi:10.1016/j.apt.2013.10.010.
  • Friedlander, S. K. 2000. Smoke, dust, and haze: Fundamentals of aerosol dynamics, 2nd ed. New York: Oxford University Press.
  • Fuchs, N. A. 1964. The mechanics of aerosols. New York: Dover Publications Inc.
  • Fujita, T., P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen. 2012. Atomic origins of the high catalytic activity of nanoporous gold. Nature Materials 11 (9):775–80.doi:10.1038/nmat3391.
  • Gröhn, A. J., B. Buesser, J. K. Jokiniemi, and S. E. Pratsinis. 2011. Design of turbulent flame aerosol reactors by mixing-limited fluid dynamics. Industrial and Engineering Chemistry Research 50 (6):3159–68.doi:10.1021/ie1017817.
  • Goudeli, E., M. L. Eggersdorfer, and S. E. Pratsinis. 2015a. Aggregate characteristics accounting for the evolving fractal-like structure during coagulation and sintering. Journal of Aerosol Science 89:58–68.doi:10.1016/j.jaerosci.2015.06.008.
  • Goudeli, E., M. L. Eggersdorfer, and S. E. Pratsinis. 2015b. Coagulation – Agglomeration of fractal-like particles: Structure and self-preserving size distribution. Langmuir 31 (4):1320–27.doi:10.1021/la504296z.
  • Goudeli, E., A. J. Gröhn, and S. E. Pratsinis. 2015c. Sampling dilution of nanoparticles at high temperatures. Aerosol Science and Technology. submitted.
  • Goudeli, E., and S. E. Pratsinis. 2016. Crystallinity dynamics of gold nanoparticles during sintering or coalescence. AIChE Journal 62 (2):589–598. in review.
  • Gröhn, A. J., S. E. Pratsinis, and K. Wegner. 2012. Fluid particle dynamics during combustion spray aerosol synthesis of ZrO2. Chemical Engineering Journal 191:491–502.doi:10.1016/j.cej.2012.02.093.
  • Heine, M. C., and S. E. Pratsinis. 2005. Droplet and particle dynamics during flame spray synthesis of nanoparticles. Industrial and Engineering Chemistry Research 44 (16):6222–32.doi:10.1021/ie0490278.
  • Heine, M. C., and S. E. Pratsinis. 2007. Brownian coagulation at high concentration. Langmuir 23 (19):9882–90.doi:10.1021/la7012599.
  • Heinson, W. R., C. M. Sorensen, and A. Chakrabarti. 2010. Does shape anisotropy control the fractal dimension in diffusion-limited cluster-cluster aggregation? Aerosol Science Technology 44 (12):I–IV.doi:10.1080/02786826.2010.516032.
  • Ji, Y., H. Y. Sohn, H. D. Jang, B. Wan, and T. A. Ring. 2007. Computational fluid dynamic modeling of a flame reaction process for silica nanopowder synthesis from tetraethylorthosilicate. Journal of the American Ceramic Society 90 (12):3838–45.doi:10.1111/j.1551-2916.2007.02080.x.
  • Johannessen, T., S. E. Pratsinis, and H. Livbjerg. 2000. Computational fluid-particle dynamics for the flame synthesis of alumina particles. Chemical Engineering Science 55 (1):177–91.doi:10.1016/s0009-2509(99)00183-9.
  • Johannessen, T., S. E. Pratsinis, and H. Livbjerg. 2001. Computational analysis of coagulation and coalescence in the flame synthesis of Titania particles. Powder Technology 118 (3):242–50.doi:10.1016/s0032-5910(00)00401-0.
  • Jullien, R., M. Kolb, and R. Botet. 1984. Diffusion limited aggregation with directed and anisotropic diffusion. Journal de Physique 45 (3):395–99.doi:10.1051/jphys:01984004503039500.
  • Kawasaki, T., and A. Onuki. 2011. Construction of a disorder variable from Steinhardt order parameters in binary mixtures at high densities in three dimensions. The Journal of Chemical Physics 135 (17):174109–1–174109–8.doi:10.1063/1.3656762..
  • Kim, K. S., and S. E. Pratsinis. 1990. Codeposition of SiO2/GeO2 during production of optical fiber preforms by modified chemical vapor deposition. International Journal of Heat and Mass Transfer 33 (9):1977–86.doi:10.1016/0017-9310(90)90228-m.
  • Kobata, A., K. Kusakabe, and S. Morooka. 1991. Growth and transformation of TiO2 crystallites in aerosol reactor. AIChE Journal 37 (3):347–59.doi:10.1002/aic.690370305.
  • Koch, W., and S. K. Friedlander. 1990. The effect of particle coalescence on the surface area of a coagulating aerosol. Journal of Colloid Interface Science 140 (2):419–27.doi:10.1016/0021-9797(90)90362-r.
  • Koparde, V. N., and P. T. Cummings. 2005. Molecular dynamics simulation of titanium dioxide nanoparticle sintering. The Journal of Physical Chemistry B 109 (51):24280–87.doi:10.1021/jp054667p.
  • Kraft, M. 2005. Modelling of particulate processes. KONA Powder and Particle Journal 23 (0):18–35.doi:10.14356/kona.2005007.
  • Kruis, F. E., K. A. Kusters, S. E. Pratsinis, and B. Scarlett. 1993. A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering. Aerosol Science and Technology 19 (4):514–526.doi:10.1080/02786829308959656.
  • Landgrebe, J. D., and S. E. Pratsinis. 1989. Gas-phase manufacture of particulates: Interplay of chemical reaction and aerosol coagulation in the free-molecular regime. Industrial and Engineering Chemistry Research 28 (10):1474–81.doi:10.1021/ie00094a007.
  • Lechner, W., and C. Dellago. 2008. Accurate determination of crystal structures based in average local bond order parameters. The Journal of Chemical Physics 129 (11):114707–1–114707–5.doi:10.1063/1.2977970.
  • Madler, L., W. J. Stark, and S. E. Pratsinis. 2002. Flame-made ceria nanoparticles. Journal of Materials Research 17 (6):1356–62.doi:10.1557/jmr.2002.0202.
  • Mandelbrot, B. B. 1982. The fractal geometry of nature. San Francisco: W. H. Freeman.
  • Meakin, P. 1988. Fractal aggregates. Advances in Colloid and Interface Science 28:249–331.
  • Medalia, A. I. 1987. Morphology of aggregates: I. Calculation of shape and bulkiness factors; application to computer-simulated random flocs. Journal of Colloid and Interface Science 24 (3):393–404.
  • Mitchell, P., and M. Frenklach. 2003. Particle aggregation with simultaneous surface growth. Physical Review E 67 (7):061407–061411.doi:10.1103/physreve.67.061407.
  • Mulholland, G. W., R. J. Samson, R. D. Mountain, and M. H. Ernst. 1988. Cluster size distribution for free molecular agglomeration. Energy Fuels 2 (4):481–486.
  • Müller, R., R. Jossen, H. K. Kammler, S. E. Pratsinis, and M. Kamal Akhtar. 2004. Growth of zirconia particles made by flame spray pyrolysis. AIChE Journal 50 (12):3085–94.doi:10.1002/aic.10272.
  • Park, K., F. Cao, D. B. Kittelson, and P. H. McMurry. 2003. Relationships to particle mass and mobility for diesel exhaust particles. Environmental Science and Technology 37 (3):577–83.doi:10.1021/es025960v.
  • Powers, D. R. 1978. Kinetics of SiCl4 oxidation. Journal of the American Ceramic Society 61 (7–8):295–97.doi:10.1111/j.1151-2916.1978.tb09312.x.
  • Pratsinis, S. E. 2010. Aerosol‐based technologies in nanoscale manufacturing: from functional materials to devices through core chemical engineering. AIChE Journal 56 (12):3028–35.doi:10.1002/aic.12478.
  • Pratsinis, S. E., H. Bai, P. Biswas, M. Frenklach, and S. V. R. Mastrangelo. 1990. Kinetics of titanium (IV) chloride oxidation. Journal of the American Ceramic Society 73 (7):2158–62.doi:10.1111/j.1151-2916.1990.tb05295.x.
  • Raut, J. S., R. B. Bhagat, and K. A. Fichthorn. 1998. Sintering of aluminum nanoparticles: A molecular dynamics study. Nanostructured Materials 10 (5):837–51.doi:10.1016/s0965-9773(98)00120-2.
  • Righettoni, M., A. Amann, and S. E. Pratsinis. 2015. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Materials Today 18 (3):163–71.doi:10.1016/j.mattod.2014.08.017.
  • Schild, A., A. Gutsch, H. Muehlenweg, and S. E. Pratsinis. 1999. Simulation of nanoparticle production in premixed aerosol flow reactors by interfacing fluid mechanics and particle dynamics. Journal of Nanoparticle Research 1 (2):305–15.
  • Seto, T., M. Shimada, and K. Okuyama. 1995. Evaluation of sintering of nanometer-sized titania using aerosol method. Aerosol Science and Technology 23 (2):183–200.doi:10.1080/02786829508965303.
  • Shirley, R., J. Akroyd, L. A. Miller, O. R. Inderwildi, U. Riedel, and M. Kraft. 2011. Theoretical insights into the surface growth of rutile TiO2. Combustion and Flame 158 (10):1868–76.doi:10.1016/j.combustflame.2011.06.007.
  • Sorensen, C. M. 2011. The mobility of fractal-like aggregates: A review. Aerosol Science and Technology 45 (7):765–79.doi:10.1080/02786826.2011.560909.
  • Sotiriou, G. A., and S. E. Pratsinis. 2011. Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Current Opinion in Chemical Engineering 1 (1):3–10.doi:10.1016/j.coche.2011.07.001.
  • Sotiriou, G. A., T. Sannomiya, A. Teleki, F. Krumeich, J. Vörös, and S. E. Pratsinis. 2010. Non‐toxic dry‐coated nanosilver for plasmonic biosensors. Advanced Functional Materials 20 (24):4250–57.doi:10.1002/adfm.201000985.
  • Steinhardt, P. J., D. R. Nelson, and M. Ronchetti. 1983. Bond-orientational order in liquid and glasses. Physical Review B 28 (2):784–805.doi:10.1103/physrevb.28.784.
  • Strobel, R., A. Baiker, and S. E. Pratsinis. 2006. Aerosol flame synthesis of catalysts. Advanced Powder Technology 17 (5):457–80.doi:10.1163/156855206778440525.
  • Strobel, R., and S. E. Pratsinis. 2007. Flame aerosol synthesis of smart nanostructured materials. Journal of Materials Chemistry 17 (45):4743–56.doi:10.1039/b711652 g.
  • Sung, Y., V. Raman, and R. O. Fox. 2011. Large-eddy-simulation-based multiscale modeling of TiO2 nanoparticle synthesis in a turbulent flame reactor using detailed nucleation chemistry. Chemical Engineering Science 66 (19):4370–81.doi:10.1016/j.ces.2011.04.024.
  • Tang, Y., and M. Ouyang. 2007. Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. Nature Materials 6 (10):754–59.doi:10.1038/nmat1982.
  • Teleki, A., B. Buesser, M. C. Heine, F. Krumeich, M. K. Akhtar, and S. E. Pratsinis. 2009. Role of gas −Aerosol mixing during in situ coating of flame-made titania particles. Industrial and Engineering Chemical Research 48 (1):85–92.doi:10.1021/ie800226d.
  • Thajudeen, T., R. Gopalakrishnan, and C. J. Hogan, Jr. 2012. The collision rate of non-spherical particles and aggregates for all diffusive Knudsen numbers. Aerosol Science and Technology 46 (1):1174–86.doi:10.1080/02786826.2012.701353.
  • Theodorou, D. N., and U. W. Suter. 1985. Shape of unperturbed linear polymers: Polypropylene. Macromolecules 18 (6):1206–14.doi:10.1021/ma00148a028.
  • Thompson, S. M., K. E. Gubbins, J. P. R. B. Walton, R. A. R. Chantry, and J. S. Rowlinson. 1984. A molecular dynamics study of liquid drops. Journal of Chemical Physics 81 (1):530–54.doi:10.1063/1.447358.
  • Totton, T. S., R. Shirley, and M. Kraft. 2011. First-principles thermochemistry for the combustion of TiCl4TiCl4 in a methane flame. Proceedings of the Combustion Institute 33 (1):493–500.doi:10.1016/j.proci.2010.05.011.
  • Tsantilis, S., H. Briesen, and S. E. Pratsinis. 2001. Sintering time for silica particle growth. Aerosol Science and Technology 34 (3):237–46.doi:10.1080/02786820150217812.
  • Tsantilis, S., H. K. Kammler, and S. E. Pratsinis. 2002. Population balance modeling of flame synthesis of titania nanoparticles. Chemical Engineering Science 57 (12):2139–56.doi:10.1016/s0009-2509(02)00107-0.
  • Tsantilis, S., and S. E. Pratsinis. 2004. Soft- and hard-agglomerate aerosols made at high temperatures. Langmuir 20 (14):5933–39.doi:10.1021/la036389w.
  • Vemury, S., and S. E. Pratsinis. 1995. Self-preserving size distributions of agglomerates. Journal of Aerosol Science 26 (2):175–85.doi:10.1016/0021-8502(94)00103-6.
  • Wang, G. H., and S. C. Garrick. 2005. Modeling and simulation of titania synthesis in two-dimensional methane-air flames. Journal of Nanoparticle Research 7 (6):621–32.doi:10.1007/s11051-005-4966-7.
  • Widiyastuti, W., A. Purwanto, W. N. Wang, F. Iskandar, H. Setyawan, and K. Okuyama. 2009. Nanoparticle formation through solid‐fed flame synthesis: Experiment and modeling. AIChE Journal 55 (4):885–95.doi:10.1002/aic.11695.
  • Xiong, Y., M. K. Akhtar, and S. E. Pratsinis. 1993. Formation of agglomerate particles by coagulation and sintering – Part II. The evolution of the morphology of aerosol-made titania, silica and silica-doped titania powders. Journal Aerosol Science 24 (3):301–313.doi:10.1016/0021-8502(93)90004-s.
  • Xiong, Y., and S. E. Pratsinis. 1993. Formation of agglomerate particles by coagulation and sintering – Part I. A two-dimensional solution of the population balance equation. Journal of Aerosol Science 24 (3):283–300.doi:10.1016/0021-8502(93)90003-r.
  • Yip, S. 1998. Nanocrystals: The strongest size. Nature 391 (6667):532–33.
  • Yu, M. Z., K. Z. Lin, and T. L. Chan. 2008. Effect of precursor loading on non-spherical TiO2 nanoparticle synthesis in a diffusion flame reactor. Chemical Engineering Science 63 (9):2317–29.doi:10.1016/j.ces.2007.11.008.
  • Yu, S., Y. Yoon, M. Müller-Roosen, and I. M. Kennedy. 1998. A two-dimensional discrete-sectional model for metal aerosol dynamics in a flame. Aerosol Science Technology 28 (3):185–96.doi:10.1080/02786829808965520.
  • Zhao, H., X. F. Liu, and S. D. Tse. 2009. Effects of pressure and precursor loading in the flame synthesis of titania nanoparticles. Journal of Aerosol Science 40 (11):919–37.doi:10.1016/j.jaerosci.2009.07.004.
  • Zhao, S. J., S. Q. Wang, Z. Q. Yang, and H. Q. Ye. 2001. Coalescence of three silver nanoclusters: A molecular dynamics study. Journal of Physics: Condensed Matter 13 (35):8061–69.doi:10.1088/0953-8984/13/35/313.
  • Zhu, H., and R. S. Averback. 1996. Sintering process of two nanoparticles: A study by molecular dynamics simulations. Philosophical Magazine Letters 73 (1):27–33.doi:10.1080/095008396181073.
  • Zhu, W., and S. E. Pratsinis. 1996. Flame synthesis of nanosized powders: Effect of flame configuration and oxidant composition. Nanotechnology 662:64–78.doi:10.1021/bk-1996-0622.ch004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.