237
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Modeling and analysis of a packed-bed column for the effective removal of zinc from aqueous solution using dual surface-modified biomass

, &

References

  • Akhigbe, L., S. Ouki, and D. Saroj. 2016. Disinfection and removal performance for Escherichia coli and heavy metals by silver-modified zeolite in a fixed bed column. Chemical Engineering Journal 295:92–8. doi:10.1016/j.cej.2016.03.020
  • Andrejkovicova, S., A. Sudagar, J. Rocha, C. Patinha, W. Hajjaji, E. Ferreira da Silva, A. Velosa, and F. Rocha. 2016. The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers. Applied Clay Science 126:141–52. doi:10.1016/j.clay.2016.03.009
  • Basha, C. A., M. Somasundaram, T. Kannadasan, and C. W. Lee. 2011. Heavy metals removal from copper smelting effluent using electrochemical filter press cells. Chemical Engineering Journal 171:563–71. doi:10.1016/j.cej.2011.04.031
  • BIS. 1994. Methods of sampling and test (physical and chemical) for water and wastewater: Part 49 Zinc, IS No. 3025.
  • Bohart, G., and E. Q. Adams. 1920. Some aspects of the behavior of charcoal with respect to chlorine. Journal of the American Chemical Society 42:523–44. doi:10.1021/ja01448a018
  • Djukic, A., U. Jovanovic, T. Tuvic, V. Andric, J. G. Novakovic, N. Ivanovic, and L. Matovic. 2013. The potential of ball-minded Serbian natural clay for removal of heavy metal contaminants from wastewaters: Simultaneous sorption of Ni, Cr, Cd and Pb ions. Ceramics International 39:7173–78. doi:10.1016/j.ceramint.2013.02.061
  • Dorado, A. D., X. Gamisans, C. Valderrama, M. Sole, and C. Lao. 2014. Cr(III) removal from aqueous solution A straightforward model approaching of the adsorption in a fixed-bed column. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 49:179–86. doi:10.1080/10934529.2013.838855
  • Fan, H. L., L. Li, S. F. Zhou, and Y. Z. Liu. 2016. Continuous preparation of Fe3O4 nanoparticles combined with surface modification by L-cysteine and their application in heavy metal adsorption. Ceramics International 42:4228–37. doi:10.1016/j.ceramint.2015.11.098
  • Golbaz, S., A. J. Jafari, M. Rafiee, and R. R. Kalantary. 2014. Separate and simultaneous removal of phenol, chromium and cyanide from aqueous solution by coagulation/precipitation: Mechanisms and theory. Chemical Engineering Journal 253:251–57. doi:10.1016/j.cej.2014.05.074
  • Hegazi, H. A. 2013. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC Journal 9:276–82. doi:10.1016/j.hbrcj.2013.08.004
  • Hutchins, R. A. 1973. New method simplexes design of activated carbon system. Chemical Engineering Journal 80:133–38.
  • Ihsanullah, A. Abbas, A. M. Al-Amer, T. Laoui, M. J. Al-Marri, M. S. Nasser, M. Khraisheh, and M. A. Atieh. 2016. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Separation and Purification Technology 157:141–61. doi:10.1016/j.seppur.2015.11.039
  • Jain, R., N. Jordan, D. Schild, E. D. van Hullebusch, S. Weiss, C. Franzen, F. Farges, R. Hubner, and P. N. L. Lens. 2015. Adsorption of zinc by biogenic elemental selenium nanoparticles. Chemical Engineering Journal 260:855–63. doi:10.1016/j.cej.2014.09.057
  • Jothirani, R., P. S. Kumar, A. Saravanan, A. S. Narayan, and A. Dutta. 2016. Ultrasonic modified corn pith for the sequestration of dye from aqueous solution. Journal of Industrial and Engineering Chemistry 39:162–75. doi:10.1016/j.jiec.2016.05.024
  • Khamparia, S., and D. Jaspal. 2016. Adsorptive removal of direct red 81 dye from aqueous solution onto Argemone mexicana. Sustainable Environmental Research 26:117–123. doi:10.1016/j.serj.2016.04.002
  • Lasheen, M. R., I. Y. El-Sherif, M. E. Tawfik, S. T. El-Wakeel, and M. F. El-Shahat. 2016. Preparation and adsorption properties of nano magnetite chitosan films for heavy metal ions from aqueous solution. Materials Research Bulletin 80:344–50. doi:10.1016/j.materresbull.2016.04.011
  • Lim, A. P., and A. Z. Aris. 2014. Continuous fixed-bed column study and adsorption modeling: Removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons. Biochemical Engineering Journal 87:50–61. doi:10.1016/j.bej.2014.03.019.
  • Luo, X., Z. Zhang, P. Zhou, Y. Liu, G. Ma, and Z. Lei. 2015. Synergic adsorption of acid blue 80 and heavy metals ions (Cu2+/Ni2+) onto activated carbon and its mechanisms. Journal of Industrial and Engineering Chemistry 27:164–74. doi:10.1016/j.jiec.2014.12.031
  • Mahmoud, M. E., N. A. Fekry, and M. M. A. El-Latif. 2016. Nanocomposites of nanosilica-immobilized-nanopolyaniline and crosslinked nanopolyaniline for removal of heavy metals. Chemical Engineering Journal 304:679–91. doi:10.1016/j.cej.2016.06.110
  • Mukherjee, R., P. Bhunia, and S. De. 2016. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chemical Engineering Journal 292:284–97. doi:10.1016/j.cej.2016.02.015
  • Naito, W., M. Kamo, K. Tsushima, and Y. Iwasaki. 2010. Exposure and risk assessment of zinc in Japanese surface waters. Science of the Total Environment 408:4271–84. doi:10.1016/j.scitotenv.2010.06.018
  • Nemeth, G., L. Mlinarik, and A. Torok. 2016. Adsorption and chemical precipitation of lead and zinc from contaminated solutions in porous rocks: Possible application in environmental protection. Journal of African Earth Sciences 122:98–106. doi:10.1016/j.jafrearsci.2016.04.022
  • Saravanan, A., P. S. Kumar, and R. Mugilan. 2015. Ultrasonic-assisted activated biomass (fishtail palm Caryota urens seeds) for the sequestration of copper ions from wastewater. Research on Chemical Intermediates 41:1–10.
  • Senthil Kumar, P., S. Ramalingam, R. V. Ahinaya, S. D. Kirupha, T. Vidhyadevi, and S. Sivanesan. 2012. Adsorption equilibrium, thermodynamics, kinetics, mechanism and process design of zinc (II) ions onto cashew nut shell. The Canadian Journal of Chemical Engineering 90:973–82. doi:10.1002/cjce.20588
  • Sheela, T., Y. A. Nayaka, R. Viswanatha, S. Basavanna, and T. Venkatesha. 2012. Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles. Powder Technology 217:163–70. doi:10.1016/j.powtec.2011.10.023
  • Sivarajasekar, N., and R. Baskar. 2015. Biosorption of basic violet 10 onto activated Gossypium hirsutum seeds: Batch and fixed-bed column studies. Chinese Journal of Chemical Engineering 23:1610–19. doi:10.1016/j.cjche.2015.08.029
  • Xu, Y., Z. Xie, and L. Xue. 2011. Chelation of heavy metals by potassium butyl dithiophosphate. Journal of Environmental Science 23:778–83. doi:10.1016/s1001-0742(10)60477-9
  • Yang, X., X. Huang, and T. Qiu. 2015. Recovery of zinc from cyanide tailings by flotation. Minerals Engineering 84:100–15. doi:10.1016/j.mineng.2015.10.003
  • Yoon, Y. H., and J. H. Nelson. 1984. Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service life. American Industrial Hygiene Association Journal 45:509–16. doi:10.1202/0002-8894(1984)045<0509:aogaki>2.3.co;2
  • Zhang, Y., X. Yu, Q. Wang, Z. Jiang, and T. Fang. 2015. Adsorption of zinc onto anionic ion-exchange resin from cyanide barren solution. Chinese Journal of Chemical Engineering 23:646–51. doi:10.1016/j.cjche.2014.01.003
  • Zhao, J., J. Liu, N. Li, W. Wang, J. Nan, Z. Zhao, and F. Cui. 2016. Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: Adsorption behaviour and process study. Chemical Engineering Journal 304:737–46. doi:10.1016/j.cej.2016.07.003
  • Zhou, Y., Z. Zhang, J. Zhang, and S. Xia. 2016. New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals. Journal of Environmental Science 45:248–56. doi:10.1016/j.jes.2016.03.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.