139
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Experimental analysis on particle fluctuation velocity in a horizontal air–solid two-phase pipe flow having a dune model

, , &

References

  • Datta, U., T. Dyakowski, and S. Mylvaganam. 2007. Estimation of particulate velocity components in pneumatic transport using pixel based correlation with dual plane ECT. Chemical Engineering Journal 130:87–99. doi:10.1016/j.cej.2006.08.034
  • Dyakowski, T., L. F. C. Jeanmeure, and A. J. Jaworski. 2000. Applications of electrical tomography for gas–solids and liquid–solids flows—A review. Powder Technology 112:174–92. doi:10.1016/s0032-5910(00)00292-8
  • Li, H., and Y. Tomita. 1996. An experimental study of swirling flow pneumatic conveying system in a horizontal pipeline. Journal of Fluids Engineering, Transactions of the ASME 118:526–30.
  • Li, H., and Y. Tomita. 2000. Particle velocity and concentration characteristics in a horizontal dilute swirling flow pneumatic conveying. Powder Technology 107:144–52. doi:10.1016/s0032-5910(99)00181-3
  • Lee, S. L., and F. Durst. 1982. On the motion of particles in turbulent duct flows. International Journal of Multiphase Flow 8 (2):125–46. doi:10.1016/0301-9322(82)90013-1
  • Mills, D. 2004. Pneumatic conveying design guide. Oxford, UK: Butterworth-Heinemann.
  • Rinoshika, A. 2013. Effect of oscillating soft fins on particle motion in a horizontal pneumatic conveying. International Journal of Multiphase Flow 52:13–21. doi:10.1016/j.ijmultiphaseflow.2012.12.010
  • Rinoshika, A., and M. Suzuki. 2010. An experimental study of energy-saving pneumatic conveying system in a horizontal pipeline with dune model. Powder Technology 198:49–55. doi:10.1016/j.powtec.2009.10.013
  • Rinoshika, A., F. Yan, and M. Kikuchi. 2012. Experimental study on particle fluctuation velocity of a horizontal pneumatic conveying near the minimum conveying velocity. International Journal of Multiphase Flow 40:126–35. doi:10.1016/j.ijmultiphaseflow.2011.11.007
  • Rinoshika, A., Y. Zheng, and F. Yan. 2012. Wavelet analysis on particle dynamics in a horizontal air-solid two-phase pipe flow at low air velocity. Experiments in Fluids 52 (1):137–49. doi:10.1007/s00348-011-1203-2
  • Steingart, D. A., and J. W. Evans. 2005. Measurements of granular flows in two-dimensional hoppers by particle image velocimetry. Part I: Experimental method and results. Chemical Engineering Science 60:1043–51. doi:10.1016/j.ces.2004.09.066
  • Tashiro, H., E. Watanabe, H. Shinano, K. Funatsu, and Y. Tomita. 2001. Effect of mixing gas–fine particle suspension flow with small amount of coarse ones in a horizontal pipe. International Journal of Multiphase Flow 27 (8):2001–13. doi:10.1016/s0301-9322(01)00044-1
  • Ueda, H., M. Sakai, K. Horii, K. Funatsu, and Y. Tomita. 2001. Study of swirling pneumatic transport of granule in a horizontal pipe (in Japanese). Transactions of the JSME B-67:3011–17. doi:10.1299/kikaib.67.3011
  • Watanabe, K. 1995. Transport of solids by pipelines with spiral tube. ASME FED-234:57–64.
  • Yan, F., and A. Rinoshika. 2011. Application of high-speed PIV and image processing to measuring particle velocity and concentration in a horizontal pneumatic conveying with dune model. Powder Technology 208:158–65. doi:10.1016/j.powtec.2010.12.014
  • Yan, F., and A. Rinoshika. 2012a. An experimental study of a horizontal self-excited pneumatic conveying. Journal of Fluids Engineering, Transactions of the ASME 134:04302–1–7.
  • Yan, F., and A. Rinoshika. 2012b. Characteristics of particle velocity and concentration in a horizontal self-excited gas–solid two-phase pipe flow of using soft. International Journal of Multiphase Flow 41:68–76. doi:10.1016/j.ijmultiphaseflow.2012.01.004
  • Yan, F., and A. Rinoshika. 2013a. High-speed PIV measurement of particle velocity near the minimum air velocity in a horizontal self-excited pneumatic conveying of using soft fins. Experimental Thermal and Fluid Science 44:534–43. doi:10.1016/j.expthermflusci.2012.08.015
  • Yan, F., and A. Rinoshika. 2013b. Particle fluctuation velocity of a horizontal self-excited pneumatic conveying near the minimum pressure drop. Powder Technology 241:115–25. doi:10.1016/j.powtec.2013.03.009
  • Yan, F., A. Rinoshika, R. Zhu, and W. Tang. 2016. The effect of oscillating flow on a horizontal dilute-phase pneumatic conveying. Particulate Science and Technology 34:699–706.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.