434
Views
13
CrossRef citations to date
0
Altmetric
Articles

Artificial neural network analysis of the effect of matrix size and milling time on the properties of flake Al-Cu-Mg alloy particles synthesized by ball milling

&

References

  • Afkham, Y., R. A. Khosroshahi, R. T. Mousavian, D. Brabazon, and R. Kheirifard. 2016. Microstructural characterization of ball-milled metal matrix nanocomposites (Cr, Ni, Ti)-25 wt% (Al2O3np, SiCnp). Particulate Science and Technology 1–2. doi:10.1080/02726351.2016.1211778.
  • Amirjan, M., H. Khorsand, M. H. Siadati, and R. E. Farsani. 2013. Artificial Neural Network prediction of Cu-Al2O3 composite properties prepared by powder metallurgy method. Journal of Materials Research and Technology 2:351–55.
  • Anand, K., S. Varghesea, and T. Kurianc. 2016. Effect of ball size on milling efficiency of zinc oxide dispersions. Particulate Science and Technology 1–4. doi:10.1080/02726351.2016.1248258.
  • Azarniya, A., and H. R. M. Hosseini. 2015. A new method for fabrication of in situ Al/Al3Ti–Al2O3 nanocomposites based on thermal decomposition of nanostructured tialite. Journal of Alloys and Compounds 643:64–73.
  • Azimi, A., H. Fallahdoost, and O. Nejadseyfi. 2015. Microstructure, mechanical and tribological behavior of hot-pressed mechanically alloyed Al-Zn-Mg-Cu powders. Materials Design 75:1–8.
  • Baradeswaran, A., and A. E. Perumal. 2013. Influence of B4C on the tribological and mechanical properties of Al 7075-B4C composites. Composites: Part B 54:146–52.
  • Canakci, A., F. Arslan, and T. Varol. 2013. Effect of volume fraction and size of B4C particles on production and microstructure properties of B4C reinforced aluminum alloy composites. Materials Science and Technology 29:954–60.
  • Canakci, A., S. Ozsahin, and T. Varol. 2012. Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural Networks. Powder Technology 228:26–35.
  • Canakci, A., S. Ozsahin, and T. Varol. 2013. Prediction of effect of volume fraction, compact pressure and milling time on properties of Al-Al2O3 MMCs using neural networks. Metals and Materials International 19:519–26.
  • Canakci, A., T. Varol, and S. Ozsahin. 2013. Analysis of the effect of a new process control agent technique on the mechanical milling process using a neural network model: Measurement and modeling. Measurement 46:1818–27.
  • Dashtbayazi, M. R., A. Shokuhfar, and A. Simchi. 2007. Artificial neural network modeling of mechanical alloying process for synthesizing of metal matrix nanocomposite powders. Materials Science and Engineering A 466:274–83.
  • Esmaeili, R., and M. R. Dashtbayazi. 2014. Modeling and optimization for microstructural properties of Al/SiC nanocomposite by artificial neural network and genetic algorithm. Expert Systems with Applications 41:5817–31.
  • Hamzaoui, R., M. Cherigui, S. Guessasma, O. ElKedim, and N. Fenineche. 2009. Artificial neural network methodology: Application to predict magnetic properties of nanocrystalline alloys. Materials Science and Engineering B 163:17–21.
  • Jiang, L., Z. Li, G. Fan, L. Cao, and D. Zhang. 2012. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50:1993–98.
  • Karabulut, Ş. 2015. Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method. Measurement 66:139–49.
  • Khakbiz, M., and F. Akhlaghi. 2009. Synthesis and structural characterization of Al-B4C nano-composite powders by mechanical alloying. Journal of Alloys and Compounds 479:334–41.
  • Kisasoz, A., K. A. Guler, and A. Karaaslan. 2012. Infiltration of A6063 aluminum alloy into SiC-B4C hybrid performs using vacuum assisted block mould investment casting technique. Trans. Nonferrous Met. Soc. China 22:1563–67.
  • Ma, J., S. G. Zhu, C. X. Wu, and M. L. Zhang. 2009. Application of back-propagation neural network technique to high-energy planetary ball milling process for synthesizing nanocomposite WC-MgO powders. Materials Design 30:2867–74.
  • Mondal, B. N., A. Basumallick, and P. P. Chattopadhyay. 2010. Correlation of microstructure and magnetic properties in Cu-Co-Ni alloys. Materials Science and Engineering B 166:174–79.
  • Mondal, B. N., A. Basumallick, D. N. Nath, and P. P. Chattopadhyay. 2009. Phase evolution and magnetic behaviour of Cu-Ni-Co-Fe quaternary alloys synthesized by ball milling. Materials Chemistry and Physics 116:358–62.
  • Mondal, B. N., A. Basumallick, D. N. Nath, and P. P. Chattopadhyay. 2011. Effect of Mn on the microstructure and magnetic properties in Cu-Fe-Co alloys. Metallurgical and Materials Transactions A 42A:517–23.
  • Nazari, A. G., and M. Mozafari. 2012. Simulation of structural features on mechanochemical synthesis of Al2O3-TiB2 nanocomposite by optimized artificial neural network. Advanced Powder Technology 23:220–27.
  • Ozsahin, S. 2013. Optimization of process parameters in oriented strand board manufacturing with artificial neural network analysis. European Journal of Wood and Wood Products 71:769–77.
  • Razani, M., A. Masoumi, M. Rezaeizadeh, and M. Noaparast. 2017. Evaluating the effect of feed particles size and their hardness on the particle size distribution of semi-autogenous (SAG) mill’s product. Particulate Science and Technology 1–6. doi:10.1080/02726351.2017.1313797.
  • Soltani, N., H. R. J. Nodooshan, A. Bahrami, M. I. Pech-Canul, W. Liu, and G. Wu. 2014. Effect of hot extrusion on wear properties of Al-15 wt.% Mg2Si in situ metal matrix composites. Materials and Design 53:774–81.
  • Taskin, M., and U. Caligulu. 2006. Modelling of microhardness values by means of artificial neural networks of Al/SiCp metal matrix composite material couples processed with diffusion method. Mathematical and Computational Applications 11:163–72.
  • Taskin, M., U. Caligulu, and A. K. Gur. 2008. Modeling adhesive wear resistance of Al-Si-Mg-/SiCp PM compacts fabricated by hot pressing process by means of ANN. International Journal of Advanced Manufacturing Technology 37:715–21.
  • Toraman, O. Y. 2015. Production of submicron particles by mechanical treatment: Width of particle size distribution and fineness of product. Particulate Science and Technology 33:666–70.
  • Umasankar, V., M. A. Xavior, and S. Karthikeyan. 2014. Experimental evaluation of the influence of processing parameters on the mechanical properties of SiC particle reinforced AA6061 aluminum alloy matrix composite by powder processing. Journal of Alloys and Compounds 582:380–86.
  • Varol, T., and A. Canakci. 2015a. Microstructure, Electrical conductivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy. Metals and Materials International 21:704–12.
  • Varol, T., and A. Canakci. 2015b. The effect of type and ratio of reinforcement on the synthesis and characterization Cu-based nanocomposites by flake powder metallurgy. Journal of Alloys and Compounds 649:1066–74.
  • Varol, T., A. Canakci, and S. Ozsahin. 2013. Artificial neural network modeling to effect of reinforcement properties on the physical and mechanical properties of Al2024-B4C composites produced by powder metallurgy. Composites: Part B 54:224–33.
  • Varol, T., A. Canakci, and S. Ozsahin. 2015. Modeling of the prediction of densification behavior of powder metallurgy Al-Cu-Mg/B4C composites using artificial neural networks. Acta Metallurjica Sinica (English Letters) 28:182–95.
  • Vettivel, S. C., N. Selvakumar, and N. Leema. 2013. Experimental and prediction of sintered Cu-W composite by using artificial neural Networks. Materials Design 45:323–35.
  • Yan, X. Y., Y. A. Chang, F. Y. Xie, S. L. Chen, F. Zhang, and S. Daniel. 2001. Calculated phase diagrams of aluminum alloys from binary Al-Cu to multicomponent commercial alloys. Journal of Alloys and Compounds 320:151–60.
  • Yazdanmehr, M., S. H. M. Anijdan, and A. Bahrami. 2009. Using GA-ANN algorithm to optimize soft magnetic properties of nanocrystalline mechanically alloyed Fe-Si powders. Computational Materials Science 44:1218–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.