1,253
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Validation of CFD model of multiphase flow through pipeline and annular geometries

, , , &

References

  • Alder, B. J., and T. E. Wainwright. 1960. Studies in molecular dynamics. II. Behavior of a small number of elastic spheres. The Journal of Chemical Physics 33 (5):1439–51. doi:10.1063/1.1731425.
  • Anderson, T. B., and R. Jackson. 1967. Fluid mechanical description of fluidized beds. Equations of motion. Industrial & Engineering Chemistry Fundamentals 6 (4):527–39.
  • Aude, T. C., T. L. Thompson, and E. J. Wasp. 1974. Economics of slurry pipeline systems, vol. 15. Cross (Richard B) Company. Transportation in Focus, Proceedings of the Fifteenth Annual Meeting of the Transportation Research Forum, San Francisco, California, 10–12 October 1974. https://trid.trb.org/view/27069.
  • Aude, T. C., T. L. Thompson, and E. J. Wasp. 1975. Slurry-pipeline systems for coal; other solids come of age. Oil Gas Journal (United States) 73:29.
  • Baltussen, M. W., L. J. H. Seelen, J. A. M. Kuipers, and N. G. Deen. 2013. Direct numerical simulations of gas–liquid–solid three phase flows. Chemical Engineering Science 100:293–99. doi:10.1016/j.ces.2013.02.052.
  • Bello, O. O., K. M. Reinicke, and C. Teodoriu. 2005. Particle holdup profiles in horizontal gas‐liquid‐solid multiphase flow pipeline. Chemical Engineering & Technology 28 (12):1546–53. doi:10.1002/ceat.200500195.
  • Bowen, R. M. 1976. Theory of Mixtures in Continuum Physics, ed. A. C. Eringen, vol. III. New York: Academy Press.
  • Camçi, G. 2003. Application of isokinetic sampling technique for local solid densities in upward liquid-solid flows through an annulus. PhD diss., METU.
  • Camçi, G., and T. A. Özbelge. 2006. Determination of dilute slurry densities in a vertical annulus using isokinetic sampling. Chemical Engineering Communications 193 (11):1482–501.
  • Chapman, S., and T. G. Cowling. 1970. The mathematical theory of non-uniform gases: An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. New York: Cambridge University Press.
  • Chen, L., Y. Duan, W. Pu, and C. Zhao. 2009. CFD simulation of coal-water slurry flowing in horizontal pipelines. Korean Journal of Chemical Engineering 26 (4):1144–54. doi:10.1007/s11814-009-0190-y.
  • Cornelissen, J. T., F. Taghipour, R. Escudié, N. Ellis, and J. R. Grace. 2007. CFD modelling of a liquid–solid fluidized bed. Chemical Engineering Science 62 (22):6334–48. doi:10.1016/j.ces.2007.07.014.
  • Dewangan, S. K., and S. L. Sinha. 2016. Exploring the hole cleaning parameters of horizontal wellbore using two-phase Eulerian CFD approach. The Journal of Computational Multiphase Flows 8 (1):15–39. doi:10.1177/1757482x16634218.
  • Durand, R. 1951. Transport hydraulique de graviers et galets en conduite. La Houille Blanche 1951:609–19.
  • Durand, R. and E. Condolios. 1952. The hydraulic transportation of coal and solid material in pipes. In Processing of colloquium on transport of coal, vol. 5. National Coal Board, November 5, London, UK.
  • Eraslan, A. N., and T. A. Özbelge. 2003. Assessment of flow and heat transfer characteristics for proposed solid density distributions in dilute laminar slurry upflows through a concentric annulus. Chemical Engineering Science 58 (17):4055–69. doi:10.1016/s0009-2509(03)00284-7.
  • Escudier, M. P. P. J., P. J. Oliveira, F. Pinho, and S. Smith. 2002. Fully developed laminar flow of non-Newtonian liquids through annuli: comparison of numerical calculations with experiments. Experiments in Fluids 33 (1):101–11. doi:10.1007/s00348-002-0429-4.
  • Fluent, A. N. S. Y. S. 2009. 12.0/12.1 Documentation. Users Guide Manual, Ansys Inc.
  • Fu, S., B. E. Launder, and M. A. Leschziner. 1987. Modelling strongly swirling recirculating jet flow with Reynolds-stress transport closures. In 6th Symposium on turbulent shear flows, France, Toulouse, 17–6.
  • Fukuda, T., and Y. Shoji. 1986. Pressure drop and heat transfer for tree phase flow: 1st Report, flow in horizontal pipes. Bulletin of JSME 29 (256):3421–426. doi:10.1299/jsme1958.29.3421.
  • Gibson, M. M., and B. E. Launder. 1978. Ground effects on pressure fluctuations in the atmospheric boundary layer. Journal of Fluid Mechanics 86 (3):491–11. doi:10.1017/s0022112078001251.
  • Gillies, R. G., and C. A. Shook. 1994. Concentration distributions of sand slurries in horizontal pipe flow. Particulate Science and Technology 12 (1):45–69. doi:10.1080/02726359408906641.
  • Gillies, R. G., M. J. McKibben, and C. A. Shook. 1997. Pipeline flow of gas, liquid and sand mixtures at low velocities. Journal of Canadian Petroleum Technology 36:09.
  • Gopaliya, M. K., and D. R. Kaushal. 2015. Analysis of effect of grain size on various parameters of slurry flow through pipeline using CFD. Particulate Science and Technology 33 (4):369–84. doi:10.1080/02726351.2014.971988.
  • Govier, G. W., and K. Aziz. 1972. The flow of complex mixtures in pipes, vol. 469. New York: Van Nostrand Reinhold.
  • Haaland, S. E. 1983. Simple and explicit formulas for the friction factor in turbulent pipe flow. Journal of Fluids Engineering 105 (1):89–90. doi:10.1115/1.3240948.
  • Hatate, Y., H. Nomura, T. Fujita, S. Tajiri, and A. Ikari. 1986. Gas holdup and pressure drop in three-phase horizontal flows of gas-liquid-fine solid particles system. Journal of Chemical Engineering of Japan 19 (4):330–35. doi:10.1252/jcej.19.330.
  • Hernández, F. H., A. J. Blanco, and L. Rojas-Solórzano. 2008. CFD modeling of slurry flows in horizontal pipes. In ASME 2008 fluids engineering division summer meeting collocated with the heat transfer, energy sustainability, and 3rd energy nanotechnology conferences, American Society of Mechanical Engineers, Jacksonville, Florida, USA, 857–63.
  • Kago, T., T. Saruwatari, M. Kashima, S. Morooka, and Y. Kato. 1986. Heat transfer in horizontal plug and slug flow for gas-liquid and gas-slurry systems. Journal of Chemical Engineering of Japan 19 (2):125–31. doi:10.1252/jcej.19.125.
  • Kaushal, D. R., A. Kumar, Y. Tomita, S. Kuchii, and H. Tsukamoto. 2013. Flow of mono-dispersed particles through horizontal bend. International Journal of Multiphase Flow 52:71–91. doi:10.1016/j.ijmultiphaseflow.2012.12.009.
  • Kaushal, D. R., A. Kumar, Y. Tomita, S. Kuchii, and H. Tsukamoto. 2017. Flow of bi-modal slurry through horizontal bend. KONA Powder and Particle Journal 34:258–74. doi:10.14356/kona.2017016.
  • Kaushal, D. R., and Y. Tomita. 2013. Prediction of concentration distribution in pipeline flow of highly concentrated slurry. Particulate Science and Technology 31 (1):28–34. doi:10.1080/02726351.2011.639045.
  • Kaushal, D. R., K. Sato, T. Toyota, K. Funatsu, and Y. Tomita. 2005. Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry. International Journal of Multiphase Flow 31 (7):809–23. doi:10.1016/j.ijmultiphaseflow.2005.03.003.
  • Kaushal, D. R., T. Thinglas, Y. Tomita, S. Kuchii, and H. Tsukamoto. 2012. CFD modeling for pipeline flow of fine particles at high concentration. International Journal of Multiphase Flow 43:85–100. doi:10.1016/j.ijmultiphaseflow.2012.03.005.
  • Kelessidis, V. C., G. E. Bandelis, and J. Li. 2007. Flow of dilute solid-liquid mixtures in horizontal concentric and eccentric annuli. Journal of Canadian Petroleum Technology 46 (5):56–61.
  • Kelessidis, V. C., P. Dalamarinis, and R. Maglione. 2011. Experimental study and predictions of pressure losses of fluids modeled as Herschel–Bulkley in concentric and eccentric annuli in laminar, transitional and turbulent flows. Journal of Petroleum Science and Engineering 77 (3):305–12. doi:10.1016/j.petrol.2011.04.004.
  • Kocamustafaogullari, G., and Z. Wang. 1991. An experimental study on local interfacial parameters in a horizontal bubbly two-phase flow. International Journal of Multiphase Flow 17 (5):553–72. doi:10.1016/0301-9322(91)90024-w.
  • Krieger, I. M. 1972. Rheology of monodisperse latices. Advances in Colloid and Interface Science 3 (2):111–36. doi:10.1016/0001-8686(72)80001-0.
  • Kumar Gopaliya, M., and D. R. Kaushal. 2016. Modeling of sand-water slurry flow through horizontal pipe using CFD. Journal of Hydrology and Hydromechanics 64 (3):261–72. doi:10.1515/johh-2016-0027.
  • Kumar, N., M. K. Gopaliya, and D. R. Kaushal. 2016. Modeling for slurry pipeline flow having coarse particles. Multiphase Science and Technology 28 (1):1–33.
  • Lahiri, S. K., and K. C. Ghanta. 2007. Computational technique to predict the velocity and concentration profile for solid-liquid slurry flow in pipelines. In 17th International conference on hydrotransport, Capetown, South Africa, 149–75.
  • Launder, B. E., G. Jr Reece, and W. Rodi. 1975. Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics 68 (3):537–66. doi:10.1017/s0022112075001814.
  • Li, L., H.-L. Xu, and F.-Q. Yang. 2015. Three-phase flow of submarine gas hydrate pipe transport. Journal of Central South University 22 (9):3650–656. doi:10.1007/s11771-015-2906-y.
  • Lien, F.-S., and M. A. Leschziner. 1994. Assessment of turbulence-transport models including non-linear RNG eddy-viscosity formulation and second-moment closure for flow over a backward-facing step. Computers & Fluids 23 (8):983–1004.
  • Lin, C. X., and M. A. Ebadian. 2008. A numerical study of developing slurry flow in the entrance region of a horizontal pipe. Computers & Fluids 37 (8):965–74. doi:10.1016/j.compfluid.2007.10.008.
  • Ling, J., P. V. Skudarnov, C. X. Lin, and M. A. Ebadian. 2003. Numerical investigations of liquid–solid slurry flows in a fully developed turbulent flow region. International Journal of Heat and Fluid Flow 24 (3):389–98. doi:10.1016/s0142-727x(03)00018-3.
  • Liu, X., Y. Aramaki, L. Guo, and K. Morita. 2015. Numerical simulation of gas–liquid–solid three-phase flow using particle methods. Journal of Nuclear Science and Technology 52 (12):1480–89. doi:10.1080/00223131.2015.1012132.
  • Markatos, N. C. 1986. The mathematical modelling of turbulent flows. Applied Mathematical Modelling 10 (3):190–20. doi:10.1016/0307-904x(86)90045-4.
  • Newitt, D. D. 1955. Hydraulic conveying of solids in horizontal pipes. Transactions of the Institution of Chemical Engineers 33:93–103. doi:10.1038/175800b0.
  • Nourmohammadi, K., P. K. Hopke, and J. J. Stukel. 1985. Turbulent air flow over rough surfaces. II. Turbulent flow parameters. ASME, Transactions, Journal of Fluids Engineering 107:55–60. doi:10.1115/1.3242440.
  • O’Brien, M. P. 1933. Review of the theory of turbulent flow and its relation to sediment‐transportation. Eos, Transactions American Geophysical Union 14 (1):487–91.
  • Orell, A. 2007. The effect of gas injection on the hydraulic transport of slurries in horizontal pipes. Chemical Engineering Science 62 (23):6659–76. doi:10.1016/j.ces.2007.07.067.
  • Özbelge, T. A., and A. Beyaz. 2001. Dilute solid–liquid upward flows through a vertical annulus in a closed loop system. International Journal of Multiphase Flow 27 (4):737–52. doi:10.1016/s0301-9322(00)00047-1.
  • Özbelge, T. A., and A. N. Eraslan. 2006. A computational hydrodynamic and heat transfer study in turbulent up-flows of dilute slurries through a concentric annulus. Turkish Journal of Engineering and Environmental Sciences 30 (1):1–13.
  • Özbelge, T. A., and G. C. Ünal. 2008. A new correlation for two-phase pressure drops in fully developed dilute slurry up-flows through an annulus. Chemical Engineering Communications 196 (4):491–98. doi:10.1080/00986440802483822.
  • Özbelge, T. A., and S. H. Köker. 1996. Heat transfer enhancement in water—feldspar upflows through vertical annuli. International Journal of Heat and Mass Transfer 39 (1):135–47. doi:10.1016/s0017-9310(96)85012-5.
  • Pouranfard, A. R., D. Mowla, and F. Esmaeilzadeh. 2015. An experimental study of drag reduction by nanofluids in slug two-phase flow of air and water through horizontal pipes. Chinese Journal of Chemical Engineering 23 (3):471–75. doi:10.1016/j.cjche.2014.11.023.
  • Rahman, M. A., K. Freeman Adane, and R. Sean Sanders. 2013. An improved method for applying the Lockhart–Martinelli correlation to three‐phase gas–liquid–solid horizontal pipeline flows. The Canadian Journal of Chemical Engineering 91 (8):1372–82. doi:10.1002/cjce.21843.
  • Roco, M. C., and C. A. Shook. 1983. Modeling of slurry flow: The effect of particle size. The Canadian Journal of Chemical Engineering 61 (4):494–503. doi:10.1002/cjce.5450610402.
  • Rouse, H. 1937. Modern conceptions of the mechanics of turbulence. Transactions ASCE 102:463–43.
  • Rushd, S., R. A. Kelessidis, C. Vassilios, and M. A. Rahman. 2017. Investigation of pressure losses in eccentric inclined annuli. In 36th International conference on ocean, offshore & arctic engineering, American Society of Mechanical Engineering, Trondheim, Norway.
  • Sanders, R. S., J. Schaan, and M. M. McKibben. 2007. Oil sand slurry conditioning tests in a 100 mm pipeline loop. The Canadian Journal of Chemical Engineering 85 (5):756–64. doi:10.1002/cjce.5450850521.
  • Scott, D. S., and P. K. Rao. 1971. Transport of solids by gas‐liquid mixtures in horizontal pipes. The Canadian Journal of Chemical Engineering 49 (3):302–09. doi:10.1002/cjce.5450490302.
  • Seshadri, V. 1982a. Basic process design for a slurry pipeline. Proc. the short term course on design of pipelines for transporting liquid and solid materials, IIT, Delhi.
  • Seshadri, V. 1982b. Concentration and size distribution of solids in a slurry pipeline. In Proc. 11th nat. conference on fluid mechanics and fluid power, BHEL, Hyderabad.
  • Skudarnov, P. V., C. X. Lin, and M. A. Ebadian. 2004. Double-species slurry flow in a horizontal pipeline. Journal of Fluids Engineering 126 (1):125–32. doi:10.1115/1.1637925.
  • Skudarnov, P. V., H. J. Kang, C. X. Lin, M. A. Ebadian, P. W. Gibbons, F. F. Erian, and M. Rinker. 2001. Experimental investigation of single-and double-species slurry transportation in a horizontal pipeline. In Proc. ANS 9th international topical meeting on robotics and remote systems, Seattle, WA.
  • Syamlal, M., W. Rogers, and T. J. O’Brien. 1993. MFIX documentation: Theory guide. National Energy Technology Laboratory, Department of Energy, Technical Note DOE/METC-95/1013 and NTIS/DE95000031.
  • Thomas, D. G. 1965. Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. Journal of Colloid Science 20 (3):267–77. doi:10.1016/0095-8522(65)90016-4.
  • Toda, M., K. Shimazaki, and S. Maeda. 1978. Pressure drop of three-phase flow in horizontal pipes. Kagaku Kogaku Ronbunshu 4:56–62.
  • Van Sint Annaland, M., N. G. Deen, and J. A. M. Kuipers. 2005. Numerical simulation of gas–liquid–solid flows using a combined front tracking and discrete particle method. Chemical Engineering Science 60 (22):6188–198.
  • Vasquez, S. 2000. A phase coupled method for solving multiphase problems on unstructured mesh. In ASME fluids engineering division summer meeting, Boston, Massachusetts, USA.
  • Vijiapurapu, S., and J. Cui. 2010. Performance of turbulence models for flows through rough pipes. Applied Mathematical Modelling 34 (6):1458–66. doi:10.1016/j.apm.2009.08.029.
  • Vocadlo, J. J., and M. E. Charles. 1972. Transportation of slurries. Canadian Mining and Metallurgical Bulletin 65:726.
  • Wakeman, T., and W. Tabakoff. 1982. Measured particle rebound characteristics useful for erosion prediction. In ASME 1982 international gas turbine conference and exhibit, American Society of Mechanical Engineers, London, England, V003T05A005–V003T05A005.
  • Washino, K., H. S. Tan, A. D. Salman, and M. J. Hounslow. 2011. Direct numerical simulation of solid–liquid–gas three-phase flow: Fluid–solid interaction. Powder Technology 206 (1):161–69. doi:10.1016/j.powtec.2010.07.015.
  • Wasp, E. J., J. P. Kenny, and R. L. Gandhi. 1977. Solid–liquid flow: Slurry pipeline transportation (Pumps, valves, mechanical equipment, economics). Ser. Bulk Mater. Handl.; (United States) 1:4.
  • Wood, D. J. (1966). An explicit friction factor relationship. Civil Engineering 36 (12):60–61.
  • Zagarola, M. V., and A. J. Smits. 1997. Scaling of the mean velocity profile for turbulent pipe flow. Physical Review Letters 78 (2):239. doi:10.1103/physrevlett.78.239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.