550
Views
10
CrossRef citations to date
0
Altmetric
REVIEW

A review of moisture migration in bulk material

, , , &
Pages 247-260 | Received 03 May 2018, Accepted 20 Jul 2018, Published online: 03 Dec 2018

References

  • Ahrens, S., F. Falk, R. Groszbach, and D. Langbein. 1994. Experiments on oscillations of small liquid bridges. Microgravity, Science and Technology 7 (1):2–5.
  • Ata, A.,. Y. I. Rabinovich, and R. K. Singh. 2002. Role of surface roughness in capillary adhesion. Journal of Adhesion Science and Technology 16 (4):337–46. doi: 10.1163/156856102760067145.
  • Avila‐Acevedo, J. G., and E. Tsotsas. 2010. Moisture migration in stored granular materials. Paper presented at Porous Media and Its Applications in Science, Engineering, and Industry: 3rd International Conference, Tuscany, Italy, June 20–24.
  • Bear, J. 1972. Dynamics of fluids in porous media. New York, NY: Elsevier.
  • Bear, J. 1979. Hydraulics of groundwater, ground water motion. New York, NY: McGraw-Hill Publications.
  • Bear, J. 2000. Available from http://www.interpore.org/ref-mat_pub/mgfc-course/mgfcdarcy.html.
  • Bhairy, S. R., B. M. Habade, K. G. Shivram, R. G. Vidula, K. G. Yogita, and K. K. Sagar. 2015. Pellets and pelletization as multiparticulate drug delivery systems (mpdds): A conventional and novel approach. International Journal of Institutional Pharmacy and Life Sciences 5 (4).
  • Bika, D., G. I. Tardos, S. Panmai, L. Farber, and J. Michaels. 2005. Strength and morphology of solid bridges in dry granules of pharmaceutical powders. Powder Technology 150 (2):104–16.
  • Bronlund, J. E., and P. Tony. 2008. Mathematical modelling of temperature induced moisture migration in bulk powders. Chemical Engineering Science 63 (9):2330–40. doi: 10.1016/j.ces.2007.12.021.
  • Bronlund, J. E., A. Tony, and H. J. Paterson. n.d. A model to predict moisture migration in bulk powders subjected to temperature gradients.
  • Butt, H. J. 2008. Capillary forces: Influence of roughness and heterogeneity. Langmuir 24 (9):4715–21. doi: 10.1021/la703640f.
  • Butt, H. J., and M. Kappl. 2009. Normal capillary forces. Advances in Colloid and Interface Science 146 (1–2):48–60. doi: 10.1016/j.cis.2008.10.002.
  • Capes, C. E. 1980. Handbook of powder technology. Amsterdam, The Netherlands: Elsevier Science.
  • Carman, P. C. 1937. Fluid flow through granular beds. Transactions of the Institution of Chemical Engineers 75: S32–S48. no
  • Ceaglske, N. H., and O. A. Hougen. 1937. Drying granular solids. Industrial & Engineering Chemistry 29 (7):805–13. doi: 10.1021/ie50331a017.
  • Chen, F. 2009. Coupled flow discrete element method application in granular porous media using open source codes. Doctoral Dissertations, University of Tennessee.
  • Chen, W., J. Chen, K. Williams, and C. Wheeler. 2017. Investigation into the ship motion induced moisture migration during seaborne coal transport. Advanced Powder Technology 28 (11):3004–13. doi: 10.1016/j.apt.2017.09.011.
  • Chen, T.-Y., and J. Tsamopoulos. 1993. Nonlinear dynamics of capillary bridges: theory. Journal of Fluid Mechanics 255(1):373–409. doi: 10.1017/S0022112093002526.
  • Chen, R. G., and H. R. Wang. 2006. Measurement and numerical simulation of moisture transport within potash beds as a prelude to moisture migration caking. Advanced Powder Technology 17 (1):29–47. doi: 10.1163/156855206775123511.
  • Chen, J., K. C. Williams, W. Chen, and T. Y. Donohue. 2016. Experimental research on the moisture migration characteristics of coal material: 36th International Academic Conference on Engineering, Technology and Innovations, Tokyo, Japan, March 28.
  • Chen, M. Q., X. X. Xu, L. Jia, P. C. Jia, and F. Yang. 2013. Analysis of moisture migration of typical msw matrices at medium temperature. Chemical Engineering Communications 200 (5):628–37. doi: 10.1080/00986445.2012.717312.
  • Chen, y., y Zhao, h Gao, and J Zheng. 2010. Liquid bridge force between two unequal-sized spheres. Paper presented at 7th annual conference of Chinese society of paricuology cum symposium on particle technology across Taiwan straits, Xi'an, China, August 16.
  • Chen, Y., Y. Zhao, H. Gao, and J. Zheng. 2011. Liquid bridge force between two unequal-sized spheres or a sphere and a plane. Particuology 9 (4):374–80. doi: 10.1016/j.partic.2010.11.006.
  • Cleaver, J. A. S., G. Karatzas, S. Louis, and I. Hayati. 2004. Moisture-induced caking of boric acid powder. Powder Technology 146 (1–2):93–101.
  • Colbeck, S. C. 1997. Capillary bonding of wet surfaces - the effects of contact angle and surface roughness. Journal of Adhesion Science and Technology 11 (3):359–71. doi: 10.1163/156856197X00750.
  • Collins, R. E. 1961. Flow of fluids: through porous materials. USA: Reinhold Publishing Corporation.
  • Crank, J. 1956. The mathematics of diffusion. Oxford, UK: Clarendon Press.
  • Dong, K. J., S. B. Kuang, A. Vince, T. Hughes, and A. B. Yu. 2010. Numerical simulation of the in-line pressure jig unit in coal preparation. Minerals Engineering 23 (4):301–12. doi: 10.1016/j.mineng.2009.10.009.
  • Fair, G. M., L. P. Hatch, and H. E. Hudson. 1933. Fundamental factors governing the streamline flow of water through sand [with discussion]. Journal (American Water Works Association) 25 (11):1551–65.
  • Farber, L., G. I. Tardos, and J. N. Michaels. 2003. Evolution and structure of drying material bridges of pharmaceutical excipients: Studies on a microscope slide. Chemical Engineering Science 58 (19):4515–25.
  • Ferrera, C., M. G. Cabezas, and J. M. Montanero. 2006. An experimental analysis of the linear vibration of axisymmetric liquid bridges. Physics of Fluids 18 (8):082105. doi: 10.1063/1.2337668.
  • Ferrera, C., and J. M. Montanero. 2007. Experimental study of small-amplitude lateral vibrations of an axisymmetric liquid bridge. Physics of Fluids 19 (11):118103. doi: 10.1063/1.2804282.
  • Fries, L., S. Antonyuk, S. Heinrich, and S. Palzer. 2011. DEM–CFD modeling of a fluidized bed spray granulator. Chemical Engineering Science 66 (11):2340–55. doi: 10.1016/j.ces.2011.02.038.
  • García, F. J., and A. Castellanos. 1996. One‐dimensional models for slender axisymmetric viscous liquid bridges. Physics of Fluids (1994–Present) 8(11):2837–46. doi: 10.1063/1.869087.
  • Gastón, A., R. Abalone, R. E. Bartosik, and J. C. Rodríguez. 2009. Mathematical modelling of heat and moisture transfer of wheat stored in plastic bags (silobags). Biosystems Engineering 104 (1):72–85. doi: 10.1016/j.biosystemseng.2009.06.012.
  • Gladkyy, A., and R. R. Schwarze. 2014. Comparison of different capillary bridge models for application in the discrete element method. Granular Matter 16 (6):911–20.
  • Ghosh, V., G. R. Ziegler, and R. C. Anantheswaran. 2005. Moisture migration through chocolate-flavored confectionery coatings. Journal of Food Engineering 66 (2):177–86. doi: 10.1016/j.jfoodeng.2004.03.012.
  • Hagen–Poiseuille equation. Available from https://en.wikipedia.org/wiki/Hagen%E2%80%93Poiseuille_equation (accessed August 1, 2018).
  • Higuera, M., and J. A. Nicolás. 1997. Linear nonaxisymmetric oscillations of nearly inviscid liquid bridges. Physics of Fluids (1994-Present) 9 (2):276–85. doi: 10.1063/1.869148.
  • Israelachvili, J. N. 2011. Intermolecular and surface forces. 3rd ed. USA: Academic Press.
  • Iveson, S. M., N. W. Page, and J. D. Litster. 2003. The importance of wet-powder dynamic mechanical properties in understanding granulation. Powder Technology 130 (1–3):97–101. doi: 10.1016/s0032-5910(02)00233-4.
  • Jajcevic, D., E. Siegmann, C. Radeke, and J. G. Khinast. 2013. Large-scale CFD–DEM simulations of fluidized granular systems. Chemical Engineering Science 98: 298–310. doi: 10.1016/j.ces.2013.05.014.
  • Jame, Y. W., and D. I. Norum. 1976. Heat and mass transfer in freezing unsatumted soil in a closed system. Proceedings of the 2nd Conference on Soil Water Problems in Cold Regions, Edmonton, Alta.
  • Jian, F., D. S. Jayas, and N. D. G. White. 2009. Temperature fluctuations and moisture migration in wheat stored for 15 months in a metal silo in Canada. Journal of Stored Products Research 45 (2):82–90. doi: 10.1016/j.jspr.2008.09.004.
  • Khankari, K. K., R. V. Morey, and S. V. Patankar. 1994. Mathematical model for moisture diffusion in stored grain due to temperature gradients. Transactions of the ASAE 37 (5):1591–604.
  • Kidambi, R. 2011. Frequency and damping of non-axisymmetric surface oscillations of a viscous cylindrical liquid bridge. Journal of Fluid Mechanics 681:597–621. doi: 10.1017/jfm.2011.225.
  • Korolev, V. A., and E. A. Fedyaeva. 2014. Effect of phase composition on the parameters of non-isothermal moisture transfer in unsaturated sandy soils. Journal of Civil Engineering and Management 20 (1):95–102. doi: 10.3846/13923730.2013.843584.
  • Kreba, S. A., and C. P. Maulé. 2010. Estimating vertical soil water fluxes with tracers and time domain reflectometry (TDR) in a sand column under controlled laboratory conditions. Canadian Biosystems Engineering 52: 1.9–1.17.
  • Krishnaiah, S., and D. N. Singh. 2003. A methodology to determine soil moisture movement due to thermal gradients. Experimental Thermal and Fluid Science 27 (6):715–21. doi: 10.1016/S0894-1777(02)00306-0.
  • Kristensen, H. G., and T. Schaefer. 1987. Granulation: A review on pharmaceutical wet-Granulation. Drug Development and Industrial Pharmacy 13 (4–5):803–72. doi: 10.3109/03639048709105217.
  • Lai, Y., W. Pei, M. Zhang, and J. Zhou. 2014. Study on theory model of hydro-thermal–mechanical interaction process in saturated freezing silty soil. International Journal of Heat and Mass Transfer 78: 805–19. doi: 10.1016/j.ijheatmasstransfer.2014.07.035.
  • Lajos, B. 2008. Soil science. Available from http://www.tankonyvtar.hu/en/tartalom/tamop425/0032_talajtan/ch07s02.html.
  • Leaper, M. C., D. C. Prime, P. M. Taylor, and V. Leach. 2012. Solid bridge formation between spray-dried sodium carbonate particles. Drying Technology 30 (9):1008–13.
  • Lechman, J., and N. Lu. 2008. Capillary force and water retention between two uneven-sized particles. Journal of Engineering Mechanics 134 (5):374–84. doi: 10.1061/(ASCE)0733-9399(2008)134:5(374).
  • Lian, G., C. Thornton, and M. J. Adams. 1993. A theoretical study of the liquid bridge forces between two rigid spherical bodies. Journal of Colloid and Interface Science 161 (1):138–47. doi: 10.1006/jcis.1993.1452.
  • Liu, D., C. Bu, and X. Chen. 2013. Development and test of CFD–DEM model for complex geometry: a coupling algorithm for fluent and DEM. Computers & Chemical Engineering 58: 260–68. doi: 10.1016/j.compchemeng.2013.07.006.
  • Liu, B. C., W. Liu, and S. W. Peng. 2005. Study of heat and moisture transfer in soil with a dry surface layer. International Journal of Heat and Mass Transfer 48 (21–22):4579–89. doi: 10.1016/j.ijheatmasstransfer.2005.06.004.
  • Liu, W. E. I., S. W. Peng, and K. Mizukami. 1997. Moisture evaporation and migration in thin porous packed bed influenced by ambient and operating conditions. International Journal of Energy Research 21 (1): 41–53. doi: 10.1002/(SICI)1099-114X(199701)21:1 < 41::AID-ER246 > 3.0.CO;2-Z.
  • Mageea, T. R. A., G. Neilla, and A. H. Al-Muhtaseb. Moisture sorption characteristics of heat treated flour, culinary flour and high ratio cake. Available from https://pdfs.semanticscholar.org/91c8/43dd6a55153b31e5ca29b0cf7ea054652c3d.pdf (accessed August 1, 2018).
  • Mason, G., and W. C. Clark. 1965. Liquid bridges between spheres. Chemical Engineering Science 20 (10):859–66. doi: 10.1016/0009-2509(65)80082-3.
  • Megias-Alguacil, D., and L. J. Gauckler. 2009. Capillary forces between two solid spheres linked by a concave liquid bridge: Regions of existence and forces mapping. AIChE Journal 55 (5):1103–09. doi: 10.1002/aic.11726.
  • Megias-Alguacil, D., and L. J. Gauckler. 2010. Analysis of the capillary forces between two small solid spheres binded by a convex liquid bridge. Powder Technology 198 (2):211–18 doi: 10.1016/j.powtec.2009.11.009.
  • Mehrer, H. 2007. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Germany: Springer Science & Business Media.
  • Mikami, T. 1998. Agglomerating fluidization of liquid/solid bridging particles and its control. Doctor Thesis, Tokyo University of Agriculture and Technology, 62.
  • Mollot, D. J., J. Tsamopoulos, T.-Y. Chen, and N. Ashgriz. 1993. Nonlinear dynamics of capillary bridges: experiments. Journal of Fluid Mechanics 255(1):411–35. doi: 10.1017/S0022112093002538.
  • Montanero, J. M., and F. J. Acero. 2005. A note on the use of one-dimensional models to describe the linear dynamics of liquid bridges. European Journal of Mechanics - B/Fluids 24 (3):288–95. doi: 10.1016/j.euromechflu.2004.10.001.
  • Montanero, J. M., and C. Ferrera. 2008. A simple model to describe the lateral oscillations of axisymmetric liquid bridges. Physics of Fluids 20 (2):022103. doi: 10.1063/1.2840666.
  • Murase, K., T. Mochida, Y. Sagawa, and H. Sugama. 2008. Estimation on the strength of a liquid bridge adhered to three spheres. Advanced Powder Technology 19 (4):349–67. doi: 10.1163/156855208x314949.
  • Murase, K., T. Mochida, and H. Sugama. 2004. Experimental and numerical studies on liquid bridge formed among three spheres. Granular Matter 6 (2–3):111–19. doi: 10.1007/s10035-004-0168-8.
  • Nazemi, A. H., and A. Majnooni-Heris. 2012. A mathematical model for the interactions between non-identical rough spheres, liquid bridge and liquid vapor. Journal of Colloid and Interface Science 369 (1):402–10. doi: 10.1016/j.jcis.2011.11.051.
  • Nicolás, J. A. 1991. Frequency response of axisymmetric liquid bridges to an oscillatory microgravity field. Microgravity Science and Technology 4:188–90.
  • Nicolás, J. A., and J. M. Vega. 2000. Linear oscillations of axisymmetric viscous liquid bridges. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP 51 (5):701–31. doi: 10.1007/PL00001516.
  • Noorishad, J., C. F. Tsang, and P. A. Witherspoon. 1984. Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: Numerical approach. Journal of Geophysical Research: Solid Earth 89 (B12):10365. doi: 10.1029/JB089iB12p10365.
  • Nutting, P. G. 1930. Physical analysis of oil sands. AAPG Bulletin 14: 1337–49.
  • Padday, J. F., G. Pétré, C. G. Rusu, J. Gamero, and G. Wozniak. 1997. The shape, stability and breakage of pendant liquid bridges. Journal of Fluid Mechanics 352: 177–204. doi: 10.1017/S0022112097007234.
  • Padmadisastra, Y., R. A. Kennedy, and P. J. Stewart. 1994. Solid bridge formation in sulphonamide-Emdex Interactive systems. International Journal of Pharmaceutics 112 (1):55–63.
  • Palzer, S. 2011. Agglomeration of pharmaceutical, detergent, chemical and food powders—similarities and differences of materials and processes. Powder Technology 206 (1–2):2–17.
  • Paul, A, T. Laurila, V. Vuorinen and S. V. Divinski. 2014. Fick’s Laws of Diffusion. In Thermodynamics, diffusion and the kirkendall effect in solids. 115?39. Cham: Springer.
  • Pepin, X., D. Rossetti, and S. J. Simons. 2000. Modeling pendular liquid bridges with a reducing solid-liquid Interface. Journal of Colloid and Interface Science 232 (2):298–302. doi: 10.1006/jcis.2000.7183.
  • Perales, J. M., and J. Meseguer. 1992. Theoretical and experimental study of the vibration of axisymmetric viscous liquid bridges. Physics of Fluids A: Fluid Dynamics (1989–1993) 4 (6):1110–30. doi: 10.1063/1.858230.
  • Perales, J. M., and J. M. Vega. 2010. One-dimensional dynamics of nearly unstable axisymmetric liquid bridges. Physics of Fluids 22 (11):112114. doi: 10.1063/1.3516640.
  • Pitois, O., P. Moucheront, and X. Chateau. 2000. Liquid bridge between two moving spheres: an experimental study of viscosity effects. Journal of Colloid and Interface Science 231 (1):26–31. doi: 10.1006/jcis.2000.7096.
  • Pitois, O., P. Moucheront, and X. Chateau. 2001. Rupture energy of a pendular liquid bridge. The European Physical Journal B 23 (1):79–86. doi: 10.1007/s100510170084.
  • Rabinovich, Y. I., M. S. Esayanur, and B. M. Moudgil. 2005. Capillary forces between two spheres with a fixed volume liquid bridge: Theory and experiment. Langmuir 21 (24):10992–97 doi: 10.1021/la0517639.
  • Richards, L. A. 2004. Capillary conduction of liquids through porous mediums. Journal of Applied Physics 1 (5):318–33.
  • Risbo, J. 2003. The dynamics of moisture migration in packaged multi-component food systems II: analytical solutions and comparison to experimental moisture transfer rate results. Journal of Food Engineering 58 (3):247–52. doi: 10.1016/s0260-8774(02)00374-6.
  • Roca, E., V. Guillard, S. Guilbert, and N. Gontard. 2006. Moisture migration in a cereal composite food at high water activity: Effects of initial porosity and fat content. Journal of Cereal Science 43 (2):144–51. doi: 10.1016/j.jcs.2005.08.008.
  • Rooij, G. 2016. Subsurface flow of water in soils and geological formations. Oxford Research Encyclopedia of Environmental Science. doi: 10.1093/acrefore/9780199389414.013.3.
  • Rossetti, D., X. Pepin, and S. J. R. Simons. 2003. Rupture energy and wetting behavior of pendular liquid bridges in relation to the spherical agglomeration process. Journal of Colloid and Interface Science 261 (1):161–69 doi: 10.1016/s0021-9797(03)00043-2.
  • Rossetti, D., and S. J. R. Simons. 2003. A microscale investigation of liquid bridges in the spherical agglomeration process. Powder Technology 130 (1–3):49–55. doi: 10.1016/s0032-5910(02)00225-5.
  • Roudaut, G., and F. Debeaufort. 2010. 6 - Moisture loss, gain and migration in foods and its impact on food quality. In Chemical deterioration and physical instability of food and beverages, ed. L. H. Skibsted, J. Risbo and M. L. Andersen, 143–85. Cambridge, UK: Woodhead Publishing.
  • Salikov, V., S. Antonyuk, S. Heinrich, V. S. Sutkar, N. G. Deen, and J. A. M. Kuipers. 2015. Characterization and CFD-DEM modelling of a prismatic spouted bed. Powder Technology 270: 622–36. doi: 10.1016/j.powtec.2014.05.026.
  • Shamy, U. E. 2008. DEM Modeling of the Effect of HydrauClic Hysteresis on the Shear Strength of Unsaturated Granular Soils. In Geosustainability and geohazard mitigation: proceedings of sessions of geocongress 2008. New Orleans, LA/Reston, VA: Geo-Institute of The American Society of Civil Engineers.
  • Shaoyuan, F. 2002. Soil Water Dynamics. Available from http://wenku.baidu.com/view/92f31671168884868762d6f6.html.
  • Shoop, S. A., and S. R. Bigl. 1997. Moisture migration during freeze and thaw of unsaturated soils: modeling and large scale experiments. Cold Regions Science and Technology 25 (1):33–45. doi: 10.1016/S0165-232X(96)00015-8.
  • Simons, S. J. R., and R. J. Fairbrother. 2000. Direct observations of liquid binder–particle interactions: the role of wetting behaviour in agglomerate growth. Powder Technology 110 (1–2):44–58. doi: 10.1016/S0032-5910(99)00267-3.
  • Simons, S. J. R., J. P. K. Seville, and M. J. Adams. 1994. An analysis of the rupture energy of pendular liquid bridges. Chemical Engineering Science 49 (14):2331–39 doi: 10.1016/0009-2509(94)E0050-Z.
  • Taylor, G. S., and J. N. Luthin. 1978. A model for coupled heat and moisture transfer during soil freezing. Canadian Geotechnical Journal 15 (4):548–55. doi: 10.1139/t78-058.
  • Thomas, H. R., and Y. He. 1995. Analysis of coupled heat, moisture and air transfer in a deformable unsaturated soil. Geotechnique 45 (4):677–89.
  • Thorpe, G. R. 1994. Modelling heat and mass transfer phenomena in bulk stored grains. Paper presented at Proceedings of the 6th International Working Conference on Stored-product Protection, Wallingford, UK, April 17-23.
  • Tselishchev, Y. G., and V. A. Val'tsifer. 2003. Influence of the type of contact between particles joined by a liquid bridge on the capillary cohesive forces. Colloid Journal 65 (3):385–89 doi: 10.1023/A:1024275327145.
  • Urso, M. E., C. J. Lawrence, and M. J. Adams. 1999. Pendular, funicular, and capillary bridges: Results for two dimensions. Journal of Colloid and Interface Science 220 (1):42–56. doi: 10.1006/jcis.1999.6512.
  • Valsamis, J. B., M. Mastrangeli, and P. Lambert. 2013. Vertical excitation of axisymmetric liquid bridges. European Journal of Mechanics - B/Fluids 38 :47–57. doi: 10.1016/j.euromechflu.2012.09.008.
  • Vasić, M., Ž. Grbavčić, and Z. Radojević. 2014. Analysis of moisture transfer during the drying of clay tiles with particular reference to an estimation of the time-Dependent Effective diffusivity. Drying Technology 32 (7):829–40. doi: 10.1080/07373937.2013.870194.
  • Vega, E. J., and J. M. Montanero. 2009. Damping of linear oscillations in axisymmetric liquid bridges. Physics of Fluids 21 (9):092101. doi: 10.1063/1.3216566.
  • Vethosodsakda, T., M. L. Free, A. Janwong, and M. S. Moats. 2013. Evaluation of liquid retention capacity measurements as a tool for estimating optimal ore agglomeration moisture content. International Journal of Mineral Processing 119 (0):58–64. doi: 10.1016/j.minpro.2012.12.005.
  • Viduka, S. 2012. Discrete particle simulation of solid separation in a jigging device. PhD diss., Monash University, Australia.
  • Viduka, S., Y. Feng, K. Hapgood, and P. Schwarz. 2013. CFD–DEM investigation of particle separations using a sinusoidal jigging profile. Advanced Powder Technology 24 (2):473–81. doi: 10.1016/j.apt.2012.11.012.
  • Wang, M. W., J. Li, S. Ge, and S. T. Li. 2013. Moisture migration tests on unsaturated expansive clays in hefei, China. Applied Clay Science 79: 30–35. doi: 10.1016/j.clay.2013.02.024.
  • Wang, T.-H., and L.-J. Su. 2010. Experimental study on moisture migration in unsaturated loess under effect of temperature. Journal of Cold Regions Engineering 24 (3):77–86.
  • Wang, S., Z. Sun, X. Li, J. Gao, X. Lan, and Q. Dong. 2013. Simulation of flow behavior of particles in liquid–solid fluidized bed with uniform magnetic field. Powder Technology 237:314–25. doi: 10.1016/j.powtec.2012.12.013.
  • Ward, J. C. 1964. Turbulent flow in porous media. Journal of the Hydraulics Division 90(5):1–12.
  • Whitaker, S. 1980. Heat and Mass Transfer in Granular Porous Media. In Advances in drying, ed. A. S. Mujumdar. Vol. 1. London, UK: Hemisphere Publishing Company.
  • Willett, C. D., M. J. Adams, S. A. Johnson, and J. P. K. Seville. 2000. Capillary bridges between two spherical bodies. Langmuir 16 (24):9396–405. doi: 10.1021/la000657y.
  • Willett, C. D., and J. P. K. Seville. 1998. An examination of the effects of contact angle on the properties of exact and toroidal liquid bridges. Paper presented at World Congress on Particle Technology 3, UK, July 6?9.
  • Yang, C., Y. Duan, and H. Hu. 2013. Application of CFD-DEM to the study of solid exchange in a dual-leg fluidized bed. Particuology 11 (6):636–46. doi: 10.1016/j.partic.2013.01.008.
  • You, C., C. Luan, and X. Wang. 2013. An evaluation of solid bridge force using penetration to measure rheological properties. Powder Technology 239:175–82.
  • Yu, Y., and X. Wang. 2013. Effect of gravity on adhesion force of liquid bridge basing on surface evolver. Available from http://www.paper.edu.cn/releasepaper/content/201301-694. (accessed June 10, 2016).
  • Zhang, F. 2012. Pattern formation in fluid injection into dense granular media. PhD diss., Georgia Institute of Technology, USA.
  • Ziegler, G. R., B. MacMillan, and B. J. Balcom. 2003. Moisture migration in starch molding operations as observed by magnetic resonance imaging. Food Research International 36 (4):331–40. doi: 10.1016/s0963-9969(02)00224-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.