323
Views
22
CrossRef citations to date
0
Altmetric
ARTICLES

Effect of TiN and TiCN additions on spark plasma sintered Ti–6Al–4V

, , , &
Pages 156-165 | Received 07 May 2018, Accepted 21 Aug 2018, Published online: 10 Oct 2018

References

  • Abkowitz, S., S. M. Abkowitz, H. Fisher, and P. J. Schwartz. 2004. CermeTi® discontinuously reinforced Ti-matrix composites: Manufacturing, properties, and applications. JOM 56 (5):37–41.
  • Angerer, P., L. Yu, K. A. Khor, and G. Krumpel. 2004. Spark-plasma-sintering (SPS) of nanostructured and submicron titanium oxide powders. Materials Science and Engineering: A 381 (1-2):16–9.
  • Anselmi-Tamburini, U., Y. Kodera, M. Gasch, C. Unuvar, Z. A. Munir, M. Ohyanagi, and S. Johnson. 2006. Synthesis and characterization of dense ultra-high temperature thermal protection materials produced by field activation through spark plasma sintering (SPS): I. Hafnium diboride. Journal of Materials Science 41 (10):3097–104.
  • Chen, H., and A. Alpas. 1996. Wear of aluminium matrix composites reinforced with nickel-coated carbon fibres. Wear 192 (1-2):186–98.
  • Choi, B.-J., S.-Y. Sung, M.-G. Kim, and Y.-J. Kim. 2008. Evaluation the properties of titanium matrix composites by melting route synthesis. Journal of Materials Science and Technology-Shenyang 24 (1):105.
  • Chu, K., C.-C Jia, L.-K Jiang, and W.-S Li. 2013. Improvement of interface and mechanical properties in carbon nanotube reinforced Cu–Cr matrix composites. Materials & Design 45:407–11.
  • Diouf, S., and A. Molinari. 2012. Densification mechanisms in spark plasma sintering: Effect of particle size and pressure. Powder Technology 221:220–7.
  • Eylon, D., and S. Seagle. 2000. Titanium'99: Science and technology. St. Petersburg, 866–875.
  • Falodun, O., B. Obadele, S. Oke, M. Maja, and P. Olubambi. 2017a. Synthesis of Ti-6Al-4V alloy with nano-TiN microstructure via spark plasma sintering technique. In IOP conference series: Materials science and engineering, 012029. Bristol, UK: IOP Publishing.
  • Falodun, O. E., B. A. Obadele, S. R. Oke, O. O. Ige, P. A. Olubambi, M. L. Lethabane, and S. W. Bhero. 2017b. Influence of spark plasma sintering on microstructure and wear behaviour of Ti-6Al-4V/TiN composites. Transactions of Nonferrous Metals Society of China T 28 (1):47–54.
  • Falodun, O. E., B. A. Obadele, S. R. Oke, M. E. Maja, and P. A. Olubambi. 2018. Effect of sintering parameters on densification and microstructural evolution of nano-sized titanium nitride reinforced titanium alloys. Journal of Alloys and Compounds 736 (Supplement C):202–10.
  • Fu, Y., and C. Shearwood. 2004. Characterization of nanocrystalline TiNi powder. Scripta Materialia 50 (3):319–23.
  • Ghasali, E., K. Shirvanimoghaddam, A. H. Pakseresht, M. Alizadeh, and T. Ebadzadeh. 2017. Evaluation of microstructure and mechanical properties of Al-TaC composites prepared by spark plasma sintering process. Journal of Alloys and Compounds 705:283–9.
  • Gofrey, T., P. S. Goodwin, and C. M. Ward-Close. 2000. Titanium particulate metal matrix composites–reinforcement, production methods, and mechanical properties. Advanced Engineering Materials 2 (3):85–91.
  • Goujon, C., and P. Goeuriot. 2001. Solid state sintering and high temperature compression properties of Al-alloy5000/AlN nanocomposites. Materials Science and Engineering: A 315 (1-2):180–8.
  • Groza, J., M. Garcia, and J. Schneider. 2001. Surface effects in field-assisted sintering. Journal of Materials Research 16 (1):286–92.
  • Gurrappa, I. 2003. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Materials Characterization 51 (2-3):131–9.
  • Kim, C. K., H. S. Lee, S. Y. Shin, J. C. Lee, D. H. Kim, and S. Lee. 2005. Microstructure and mechanical properties of Cu-based bulk amorphous alloy billets fabricated by spark plasma sintering. Materials Science and Engineering: A 406 (1-2):293–9.
  • Kim, J., I. Povstugar, P. Choi, E. Yelsukov, and Y. Kwon. 2009. Synthesis of Al–Y–Ni–Co composites by mechanical alloying and consecutive spark-plasma sintering. Journal of Alloys and Compounds 486 (1):511–4.
  • Kumar, R., K. Prakash, P. Cheang, and K. Khor. 2005. Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders. Acta Materialia 53 (8):2327–35.
  • Lagos, M. A., I. Agote, G. Atxaga, O. Adarraga, and L. Pambaguian. 2016. Fabrication and characterisation of titanium matrix composites obtained using a combination of self propagating high temperature synthesis and spark plasma sintering. Materials Science and Engineering: A 655 (Supplement C):44–9.
  • Li, M., H. Zhai, Z. Huang, X. Liu, Y. Zhou, S. Li, and C. Li. 2015. Tensile behavior and strengthening mechanism in ultrafine TiC 0.5 particle reinforced Cu–Al matrix composites. Journal of Alloys and Compounds 628:186–94.
  • Mazahery, A., and M. O. Shabani. 2013. Plasticity and microstructure of A356 matrix nano composites. Journal of King Saud University-Engineering Sciences 25 (1):41–8.
  • Miklaszewski, A., D. Garbiec, and K. Niespodziana. 2018. Sintering behavior and microstructure evolution in cp-titanium processed by spark plasma sintering. Advanced Powder Technology 29 (1):50–7.
  • Morsi, K., V. Patel, S. Naraghi, and J. Garay. 2008. Processing of titanium–titanium boride dual matrix composites. Journal of Materials Processing Technology 196 (1-3):236–42.
  • Muhammad, W. N. A. W., Z. Sajuri, Y. Mutoh, and Y. Miyashita. 2011. Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology. Journal of Alloys and Compounds 509 (20):6021–9.
  • Nygren, M., and Z. Shen. 2003. On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering. Solid State Sciences 5 (1):125–31.
  • Obadele, B. A., O. O. Ige, and P. A. Olubambi. 2017. Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering. Journal of Alloys and Compounds 710:825–30.
  • Oke, S. R., O. O. Ige, O. E. Falodun, B. A. Obadele, M. B. Shongwe, and P. A. Olubambi. 2018. Optimization of process parameters for spark plasma sintering of nano structured SAF 2205 composite. Journal of Materials Research and Technology 7 (2):126–34.
  • Piggott, M. 1989. The interface in carbon fibre composites. Carbon 27 (5):657–62.
  • Ranganath, S. 1997. A review on particulate-reinforced titanium matrix composites. Journal of Materials Science 32 (1):1–16.
  • Shearwood, C., Y. Q. Fu, L. Yu, and K. A. Khor. 2005. Spark plasma sintering of TiNi nano-powder. Scripta Materialia 52 (6):455–60.
  • Shen, X., Z. Zhang, S. Wei, F. Wang, and S. Lee. 2011. Microstructures and mechanical properties of the in situ TiB–Ti metal–matrix composites synthesized by spark plasma sintering process. Journal of Alloys and Compounds 509 (29):7692–6.
  • Shen, Z., and M. Nygren. 2005. Microstructural prototyping of ceramics by kinetic engineering: applications of spark plasma sintering. The Chemical Record 5 (3):173–84.
  • Sobiecki, J. R., T. Wierzchoń, and J. Rudnicki. 2001. The influence of glow discharge nitriding, oxynitriding and carbonitriding on surface modification of Ti–1Al–1Mn titanium alloy. Vacuum 64 (1):41–6.
  • Song, S.-X., Z. Wang, and G.-P. Shi. 2013. Heating mechanism of spark plasma sintering. Ceramics International 39 (2):1393–6.
  • Tokita, M. 1993. Trends in advanced SPS spark plasma sintering systems and technology. Journal of the Society of Powder Technology, Japan 30 (11):790–804.
  • Ugandhar, S., M. Gupta, and S. Sinha. 2006. Enhancing strength and ductility of Mg/SiC composites using recrystallization heat treatment. Composite Structures 72 (2):266–72.
  • Yamazaki, K., S. Risbud, H. Aoyama, and K. Shoda. 1996. PAS (plasma activated sintering): transient sintering process control for rapid consolidation of powders. Journal of Materials Processing Technology 56 (1-4):955–65.
  • Yuan, W., S. Panigrahi, J.-Q. Su, and R. Mishra. 2011. Influence of grain size and texture on hall–petch relationship for a magnesium alloy. Scripta Materialia 65 (11):994–7.
  • Zhang, Z-h, X.-B. Shen, S. Wen, J. Luo, S-K Lee, and F-C Wang. 2010. In situ reaction synthesis of Ti–TiB composites containing high volume fraction of TiB by spark plasma sintering process. Journal of Alloys and Compounds 503 (1):145–50.
  • Zhang, Z.-H., F.-C. Wang, L. Wang, and S.-K. Li. 2008. Ultrafine-grained copper prepared by spark plasma sintering process. Materials Science and Engineering: A 476 (1-2):201–5.
  • Zhecheva, A., W. Sha, S. Malinov, and A. Long. 2005. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surface and Coatings Technology 200 (7):2192–207.
  • Zheng, Y., W. Xiong, W. Liu, W. Lei, and Q. Yuan. 2005. Effect of nano addition on the microstructures and mechanical properties of Ti (C, N)-based cermets. Ceramics International 31 (1):165–70.
  • Zhou, W., B. Mei, and J. Zhu. 2005. Fabrication of high-purity ternary carbide Ti 3 SiC 2 by spark plasma sintering technique. Materials Letters 59 (12):1547–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.