356
Views
11
CrossRef citations to date
0
Altmetric
ARTICLES

The discrete element method in silo/bin research. Recent advances and future trends

ORCID Icon
Pages 210-227 | Received 12 Jul 2018, Accepted 10 Oct 2018, Published online: 20 Dec 2018

References

  • ACI committee 313. 1982. Recommended practice for design and construction of concrete bins and bunkers for storing granular materials. Detroit, USA: American Concrete Institute.
  • Anand, A., J. S. Curtis, C. R. Wassgren, B. C. Hancock, and W. R. Ketterhagen. 2008. Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM). Chemical Engineering Science 63 (24):5821–30.
  • Arteaga, P., and U. Tüzün. 1990. Flow of binary mixtures of equal-density granules in hoppers-size segregation, flowing density and discharge rate. Chemical Engineering Science 45 (1):205–23.
  • Asaf, Z., D. Rubinstein, and I. Shmulevich. 2007. Determination of discrete element model parameters required for soil tillage. Soil and Tillage Research 92 (1-2):227–42.
  • ASTM D 6940-03 2003. Standard practice for measuring sifting segregation tendencies of bulk solids. In Annual Book of ASTM Standards, vol. 04–08. West Conshohocken, PA: ASTM International.
  • Balevičius, R., R. Kačianauskas, Z. Mroz, and I. Sielamowicz. 2006. Discrete element method applied to multiobjective optimization of discharge flow parameters in hoppers. Structural and Multidisciplinary Optimization 31 (3):163–75.
  • Balevičius, R., R. Kačianauskas, Z. Mróz, and I. Sielamowicz. 2008. Discrete-particle investigation of friction effect in filling and unsteady/steady discharge in three-dimensional wedge-shaped hopper. Powder Technology 187 (2):159–74.
  • Benink, E. J. 1989. Flow and stress analysis of cohesionless bulk materials in silos related to codes. PhD diss., University of Twente.
  • Beverloo, W. A., H. A. Leniger, and J. van de Velde. 1961. The flow of granular solids through orifices. Chemical Engineering Science 15 (3-4):260–9.
  • Boac, J. M., Bhadra, R. Casada, M. Thompson, A. P. Turner, M. D. Montross, S. G. McNeill, and R. G. Maghirang. 2015. Stored grain pack factors for wheat: comparison of three methods to field measurements. Transactions of the ASABE 58:1089–101.
  • Brown, R. L., and P. G. W. Hawksley. 1947. The internal flow of granular masses. Fuel 26:159–73.
  • Brown, R. L., and J. C. Richards. 1960. Profile of flow of granules through apertures. In Transactions of the Institute of Chemical Engineers. London: Institute of Chemical Engineers.
  • Chung, Y. C., and J. Y. Ooi. 2012. Linking of discrete element modelling with finite element analysis for analyzing structures in contact with particulate solid. Powder Technology 217:107–20.
  • Cleary, P. W., and M. L. Sawley. 2002. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Applied Mathematical Modelling 26 (2):89–111.
  • Coetzee, C. J. 2017. Review: calibration of the discrete element method. Powder Technology 310:104–42.
  • Combarros, M., H. J. Feise, H. Zetzener, and A. Kwade. 2014. Segregation of particulate solids: Experiments and DEM simulations. Particuology 12:25–32.
  • Combarros, M., H. J. Feise, S. Strege, and A. Kwade. 2016. Segregation in heaps and silos: comparison between experiment, simulation and cotinuum model. Powder Technology 293:26–36.
  • Cundall, P. A. 1971. A computer model for simulating progressive, large-scale movements in blocky rock systems. Proceedings of the International Symposium on Rock Mechanics. Nancy, France (1971): 129-136
  • Cundall, P. A., and O. D. L. Strack. 1979. A discrete element model for granular assemblies. Geotechnique 29:47–65.
  • EN 1991-4. 2011. Actions on structures. Silos and tanks, CEN, Brussel.
  • Enstad, G. 1977. A note on the stresses and dome formation in axially symmetric mass flow hoppers. Chemical Engineering Science 32 (3):337–9.
  • Fraige, Y. F., P. A. Langston, A. J. Matchett, and J. Dodds. 2008. Vibration induced flow in hoppers: DEM 2D polygon model. Particuology 6 (6):455–66.
  • Goda, T. J., and F. Ebert. 2005. Three-dimensional discrete element simulations in hoppers and silos. Powder Technology 158 (1-3):58–68.
  • González-Montellano, C., J. M. Fuentes, E. Ayuga-Téllez, and F. Ayuga. 2011. Determination of the mechanical properties of maize grains and olives required for use in DEM simulations. Journal of Food Engineering 111:553–62.
  • González-Montellano, C., A. Ramírez, J. M. Fuentes, and F. Ayuga. 2012. Numerical effects derived from en masse filling of agricultural silos in DEM simulations. Computers and Electronics in Agriculture 81:113–23.
  • Guo, Y., C. Y. Wu, K. D. Kafui, and C. Thornton. 2011. 3D DEM/CFD analysis of size-induced segregation during die filling. Powder Technology 206 (1-2):177–88.
  • Härtl, J., J. Y. Ooi, J. M. Rotter, M. Wojcik, S. Ding, and G. G. Enstad. 2008. The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo. Chemical Engineering Research and Design 86 (4):370–8.
  • Hirshfeld, D., and D. C. Rapaport. 2001. Granular flow from a silo: discrete-particle simulation in three dimensions. The European Physical Journal E 4 (2):193–9.
  • Hlosta, J., D. Žurovec, J. Rozbroj, Á. Ramírez-Gómez, J. Nečas, and J. Zegzulka. 2018. Experimental determination of particle–particle restitution coefficient via double pendulum method. Chemical Engineering Research and Design 135:222–33.
  • Holst, J. M. F. G., J. Y. Ooi, J. M. Rotter, and G. H. Rong. 1999. Numerical modeling of silo filling: I. Continuum analyses. Journal of Engineering Mechanics 125 (1):94–103.
  • Horabik, J., R. Kobyłka, and M. Molenda. 2014. Development of a rarefaction wave at the discharge initiation of a storage silo. Particulogy 36:37–49.
  • Horabik, J., and M. Molenda. 2016. Parameters and contact models for DEM simulations of agricultural granular materials: a review. Biosystems Engineering 147:206–25.
  • Horabik, J., P. Parafiniuk, and M. Molenda. 2016. Experiments and discrete element method simulations of distribution of static load of grain bedding at bottom of shallow model silo. Biosystems Engineering 149:60–71.
  • Iroba, K. L., J. Mellmann, F. Weigler, T. Metzger, and E. Tsotsas. 2011a. Particle velocity profiles and residence time distribution in mixed-flow grain dryers. Granular Matter 13 (2):159–68.
  • Iroba, K. L., F. Weigler, J. Mellmann, T. Metzger, and E. Tsotsas. 2011b. Residence time distribution in mixed-flow grain dryers. Drying Technology 29 (11):1252–66.
  • ISO 4112:1990. Cereals and pulses – Guidance on measurement of the temperature of grain stored in bulk. International Organization for Standardization.
  • Janssen, H. A. 1895. Versuch über getreidedruck in SillozeUen. Z. VDI 39:1045–9.
  • Jenike, A. 1964. Storage and flow of solids. Bulletin no 123, first printing, engng. Salt Lake City, USA: Exp. Station, Univ. of Utah.
  • Jin, B., H. Tao, and W. Zhong. 2010. Flow behaviors of non-spherical granules in rectangular hopper. Chinese Journal of Chemical Engineering 18 (6):931–9.
  • Ketterhagen, W. R., J. S. Curtis, C. R. Wassgren, and B. C. Hancock. 2008. Modeling granular segregation in flow from quasi-three-dimensional, wedge-shaped hoppers. Powder Technology 179 (3):126–43.
  • Ketterhagen, W. R., J. S. Curtis, C. R. Wassgren, and B. C. Hancock. 2009. Predicting the flow mode from hoppers using the discrete element method. Powder Technology 195 (1):1–10.
  • Ketterhagen, W. R., J. S. Curtis, C. R. Wassgren, A. Kong, P. J. Narayan, and B. C. Hancock. 2007. Granular segregation in discharging cylindrical hoppers: a discrete element and experimental study. Chemical Engineering Science 62 (22):6423–39.
  • Ketterhagen, W. R., and B. C. Hancock. 2010. Optimizing the design of eccentric feed hoppers for tablet presses using DEM. Computers and Chemical Engineering 34 (7):1072–81.
  • Kobyłka, R., and M. Molenda. 2013. DEM modelling of silo load asymmetry due to eccentric filling and discharge. Powder Technology 233:65–71.
  • Kobyłka, R., and M. Molenda. 2014. DEM simulations of loads on obstruction attached to the wall of a model grain silo and of flow disturbance around the obstruction. Powder Technology 256:210–4.
  • Kobyłka, R., J. Horabik, and M. Molenda. 2017. Numerical simulation of the dynamic response due to discharge initiation of the grain silo. International Journal of Solids and Structures 106–107:27–37.
  • Kobyłka, R., J. Horabik, and M. Molenda. 2018. Development of a rarefaction wave at discharge initiation in a storage silo – DEM simulations. Particuology 36:37–49.
  • Landry, J., G. Grest, and S. Plimpton. 2004. Discrete element simulations of stress distributions in silos: crossover from two to three dimensions. Powder Technology 139 (3):233–9.
  • Lu, H., X. Guo, Y. Jin, X. Gong, W. Zhao, D. Barletta, and M. Poletto. 2017. Powder discharge from a hopper-standpipe system modelled with CPFD. Advanced Powder Technology 28 (2):481–90.
  • Masson, S., and J. Martinez. 2000. Effect of particle mechanical properties on silo flow and stresses from distinct element simulations. Powder Technology 109 (1-3):164–78.
  • Markauskas, D., and R. Kačianauskas. 2011. Investigation of rice grain flow by multisphere particle model with rolling resistance. Granular Matter 13 (2):143–8.
  • Markauskas, D., Á. Ramírez-Gómez, R. Kačianauskas, and E. Zdancevičius. 2015. Maize grain shape approaches for DEM modelling. Computers and Electronics in Agriculture 118:247–58.
  • Melin, S. 1994. Wave propagation in granular assemblies. Physical Review E 49 (3):2353–61.
  • Mellmann, J., K. L. Iroba, T. Metzger, E. Tsotsas, C. Mészáros, and I. Farkas. 2011. Moisture content and residence time distributions in mixed-flow grain dryers. Biosystems Engineering 109 (4):297–307.
  • Muramatsu, Y., A. Tagawa, E. Sakaguchi, and T. Kasai. 2007. Prediction of thermal conductivity of kernels and a packed bed of brown rice. Journal of Food Engineering 80 (1):241–8.
  • Negi, S. C., Z. Lu, and J. C. Jofriet. 1997. A numerical model for flow of granular material in silos. Part 2: model validation. Journal of Agricultural Engineering Research 68 (3):231–6.
  • Langston, P. A., M. A. Al-Awamleh, F. Y. Fraige, and B. N. Asmar. 2004. Distinct element modelling of nonspherical frictionless particle flow. Chemical Engineering Science 59 (2):425–35.
  • Langston, P. A., M. S. Nikitidis, U. Tüzün, D. M. Heyes, and N. M. Spyrou. 1997. Microstructural simulation and imaging of granular flows in two- and three-dimensional hoppers. Powder Technology 94 (1):59–72.
  • Langston, P. A., U. Tüzün, and D. M. Heyes. 1995a. Discrete element simulation of internal-stress in funnel flow hoppers. Powder Technology 85 (2):153–69.
  • Langston, P. A., U. Tüzün, and D. M. Heyes. 1995b. Discrete element simulation of granular flow in 2Dand 3D Hoppers - Dependence of discharge rate and wall stress on particle interactions. Chemical Engineering Science 50 (6):967–87.
  • Li, J., P. A. Langston, C. Webb, and T. Dyakowski. 2004. Flow of sphero-disc particles in rectangular hoppers-a DEM and experimental comparison in 3D. Chemical Engineering Science 59 (24):5917–29.
  • Li, Y., y Xu, and S. Jiang. 2009. DEM simulations and experiments of pebble flow with monosized spheres. Powder Technology 193 (3):312–8.
  • Lulbadda Waduge, L. L., S. Zigan, L. E. Stone, A. Belaidi, and P. García-Triñanes. 2017. Predicting concentrations of fine particles in enclosed vessels using a camera based system and CFD simualtions. Process Safety and Environment Protection 105:262–73.
  • Parafiniuk, P., M. Molenda, and J. Horabik. 2013. Discharge of rapeseeds from a model silo: physical testing and discrete element method simulations. Computers and Electronics in Agriculture 97:40–6.
  • Qiu, J., D. Ju, J. Zhang, and Y. Xu. 2017. DEM simulation of particle flow in a parallel-hopper-bell-less charging apparatus for blast furnace. Powder Technology 314:218–31.
  • Radvilaitė, U., Á. Ramírez-Gómez, and R. Kačianauskas. 2016. Determining the shape of agricultural materials using spherical harmonics. Computers and Electronics in Agriculture 128:160–71.
  • Ramírez, A., J. Nielsen, and F. Ayuga. 2010. On the use of plate-type normal pressure cells in silos. Part 2: validation for pressure measurements. Computers and Electronics in Agriculture 71 (1):71–0.
  • Ramírez-Aragón, C., F. Alba-Elías, A. González-Marcos, and J. Ordieres-Meré. 2018. Segregation in the tank of a rotary tablet press machine using experimental and discrete element methods. Powder Technology 328:452–69.
  • Ramírez-Gómez, Á., E. Gallego, J. M. Fuentes, C. González-Montellano, and F. Ayuga. 2014. Values for particle-scale properties of biomass briquettes made from agroforestry residues. Particuology 12:100–6.
  • Rong, G. H., S. C. Negi, and J. C. Jofriet. 1995. Simulation of flow behaviour of bulk solids in bins. part 2: shear bands, flow corrective inserts and velocity profiles. Journal of Agricultural Engineering Research 62(4): 257–69.
  • Rose, H. E., and T. Tanaka. 1959. Rate of discharge of granular materials from bins and hoppers. The Engineer 208:465–9.
  • Rotter, J. M. 2001. Guide for the economic design of circular metal silos. London and New York: Spon Press.
  • Rotter, J. M. 2007. Silo and hopper design for strength. In Chapter 4 in bulk solids handling equipment selection and operation, ed. D. McGlinchey. Oxford: Blackwell.
  • Rusinek, R., and R. Kobyłka. 2014. Experimental study and discrete element method modeling of temperature distributions in rapeseed stored in a model bin. Journal of Stored Products Research 59:254–9.
  • Sanad, A., J. Ooi, J. M. F. Holst, and J. M. Rotter. 2001. Computations of granular flow and pressures in a flat-bottomed silo. Journal of Engineering Mechanics 127 (10):1033–43.
  • Sielamowicz, I., S. Błoñski, and A. T. Kowalewski. 2006. Digital particle image velocimetry (DPIV) technique in measurements of granular material flows, part 2 of 3-converging hoppers. Chemical Engineering Science 61 (16):5307–17.
  • Sielamowicz, I., Z. Mróz, R. Balevicius, and R. Kacianuskas. 2007. DEM simulaton of wall pressures in a model of silo and comparison to experimental measurements. In Proceedings of International Conference in Particle Technology (PARTEC2017).
  • Siiria, S., and J. Yliruusi. 2007. Particle packing simulations based on Newtonian mechanics. Powder Technology 174 (3):82–92.
  • Singh, K. K., and T. K. Goswami. 2000. Thermal properties of cumin seed. Journal of Food Engineering 45 (4):181–7.
  • Tian, T., J. Su, J. Zhan, S. Geng, G. Xu, and X. Liu. 2018. Discrete and continuum modeling of granular flow in silo discharge. Particuology 36:127–38.
  • Walters, J. K. 1973. A theoretical analysis of stresses in axially-symmetric hoppers and bunkers. Chemical Engineering Science 28 (3):779–89.
  • Wang, P., L. Zhu, and X. Zhu. 2016. Flow pattern and normal pressure distribution in flat silo discharged using wall outlet. Powder Technology 295:104–14.
  • Weigler, F., and J. Mellmann. 2014. Investigation of grain mass flow in a mixed flow dryer. Particuology 12 :33–9.
  • Wiącek, J., and M. Molenda. 2014. Effect of particle size distribution on micro- and macromechanical response of granular packings under compression. International Journal of Solids and Structures 51 (25-26):4189–95.
  • Wiącek, J., and M. Molenda. 2016. Representative elementary volume analysis of polydisperse granular packings using discrete element method. Particuology 27:88–94.
  • Wiącek, J., M. Stasiak, and P. Parafiniuk. 2017. Effective elastic properties and pressure distribution in bidisperse granular packings: DEM simulations and experiment. Archives of Civil Andmechanical Engineering 17 (2):271–80.
  • Wensrich, C. M. 2002. Experimental behaviour of quaking in tall silos. Powder Technology 127 (1):87–94.
  • Wensrich, C. M., and R. E. Stratton. 2011. Shock waves in granular materials: Discrete and continuum comparisons. Powder Technology 210 (3):288–92.
  • Wu, J., J. Binbo, J. Chen, and Y. Yang. 2009. Multi-scale study of particle flow in silos. Advanced Powder Technology 20 (1):62–73.
  • Wu, S., M. Kou, J. Xu, X. Guo, K. Du, W. Shen, and J. Sun. 2013. DEM simulation of particle size segregation behavior during charging into and discharging from a Paul-Wurth Type hopper. Chemical Engineering Science 99:314–23.
  • Xu, Y., K. Kafui, C. Thornton, and G. Lian. 2002. Effects of material properties on granular flow in a silo using DEM simulation. Particulate Science and Technology 20 (2):109–24.
  • Yang, S. C., and S. S. Hsiau. 2001. The simulation and experimental study of granular materials discharged from a silo with the placement of inserts. Powder Technology 120 (3):244–55.
  • Yu, Y., and H. Saxén. 2011. Discrete element method simulation of properties of a 3D conical hopper with Mono-sized spheres. Advances Powder Technology 22 (3):324–31.
  • Zhang, D., and W. J. Whiten. 1998. An efficient calculation method for particle motion in discrete element simulations. Powder Technology 98:223–30.
  • Zhang, H. W., Q. Zhou, H. L. Xing, and H. Muhlhaus. 2011. A DEM study on the effective thermal conductivity of granular assemblies. Powder Technology 205 (1-3):172–83.
  • Zhao, X., T. Montgomery, and S. Zhang. 2015. Modeling stationary and moving pebbles in a pebble bed reactor. Annals of Nuclear Energy 80:52–61.
  • Zhu, H. P., and A. B. Yu. 2006. A theoretical analysis of the force models in discrete element method. Powder Technology 161 (2):122–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.