98
Views
1
CrossRef citations to date
0
Altmetric
Articles

Thermogravimetric synthesis of Ni nanoparticles with varied morphologies and particle sizes

&
Pages 685-693 | Received 05 Sep 2018, Accepted 26 Feb 2019, Published online: 01 Apr 2019

References

  • Abu-Zied, B. M., and A. M. Asiri. 2017. An investigation of the thermal decomposition of nickel citrate as a precursor for NiNiO composite nanoparticles. Thermochimica Acta 649:54–62. doi:10.1016/j.tca.2017.01.003.
  • Alizadeh, R., E. Jamshidi, and H. Ale Ebrahim. 2007. Kinetic study of nickel oxide reduction by methane. Chemical Engineering and Technology 30 (8):1123–8. doi:10.1002/ceat.200700067.
  • Azor, A., M. L. Ruiz-Gonzalez, F. Gonell, C. Laberty-Robert, M. Parras, C. Sanchez, D. Portehault, and J. M. González-Calbet. 2018. Nickel-doped sodium cobaltite 2D nanomaterials: Synthesis and electrocatalytic properties. Chemistry of Materials 30 (15):4986–94. doi:10.1021/acs.chemmater.8b01146.
  • Bai, L., F. Yuan, and Q. Tang. 2008. Synthesis of nickel nanoparticles with uniform size via a modified hydrazine reduction route. Materials Letters 62 (15):2267–70. doi:10.1016/j.matlet.2007.11.061.
  • Bransom, S., and A. Dandy. 1959. The interaction of methane and nickel oxide. Transactions of the Faraday Society 55 (0):1195–9. doi:10.1039/tf9595501195.
  • Busca, G. 2014. Chapter 9 – metal catalysts for hydrogenations and dehydrogenations. In Heterogeneous catalytic materials, 297–343. Amsterdam: Elsevier.
  • Chatterjee, R., S. Banerjee, S. Banerjee, and D. Ghosh. 2012. Reduction of nickel oxide powder and pellet by hydrogen. Transactions of the Indian Institute of Metals 65 (3):265–73. doi:10.1007/s12666-012-0130-0.
  • Chen, L., Q. Zhu, Z. Hao, T. Zhang, and Z. Xie. 2010. Development of a Co–Ni bimetallic aerogel catalyst for hydrogen production via methane oxidative CO2 reforming in a magnetic assisted fluidized bed. International Journal of Hydrogen Energy 35 (16):8494–502. doi:10.1016/j.ijhydene.2010.06.003.
  • Cinar, T., and T. Gurkaynak Altincekic. 2016. Synthesis and investigation of bimetallic Ni-Co/Al2O3 nanocatalysts using the polyol process. Particulate Science and Technology 34 (6):725–35. doi:10.1080/02726351.2015.1115452.
  • Du, Y., F. Liang, J. Lu, H. Zhou, J. Wu, T. Qu, Y. Dai, Y. Yao, and B. Yang. 2018. Influence of sintering temperature on the morphology and cycle performance of nanoscale porous materials LiFe0.75Mn0.25PO4/C. Journal of Energy Storage 19:226–31. doi:10.1016/j.est.2018.07.017.
  • Foo, Y.-T., J. E.-M. Chan, G.-C. Ngoh, A. Z. Abdullah, B. A. Horri, and B. Salamatinia. 2017. Synthesis and characterization of NiO and Ni nanoparticles using nanocrystalline cellulose (NCC) as a template. Ceramics International 43 (18):16331–9. doi:10.1016/j.ceramint.2017.09.006.
  • Hou, Y., H. Kondoh, T. Ohta, and S. Gao. 2005. Size-controlled synthesis of nickel nanoparticles. Applied Surface Science 241 (1–2):218–22. doi:10.1016/j.apsusc.2004.09.045.
  • Forsman, J., U. Tapper, A. Auvinen, and J. Jokiniemi. 2008. Production of cobalt and nickel particles by hydrogen reduction. Journal of Nanoparticle Research 10 (5):745–59. doi:10.1007/s11051-007-9304-9.
  • Jenkins, R., and R. L. Snyder. 1996. Diffraction Theory. In Introduction to X-ray powder diffractometry, 47–95. New York: John Wiley & Sons, Inc.
  • Jeon, Y. T., J. Y. Moon, G. H. Lee, J. Park, and Y. Chang. 2006. Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles. The Journal of Physical Chemistry B 110 (3):1187–91. doi:10.1021/jp054608b.
  • Kafshgari, L. A., M. Ghorbani, and A. Azizi. 2018. Synthesis and characterization of manganese ferrite nanostructure by co-precipitation, sol-gel, and hydrothermal methods. Particulate Science and Technology 36:1–7. doi:10.1080/02726351.2018.1461154.
  • Kalam, A., A. G. Al-Sehemi, A. S. Al-Shihri, G. Du, and T. Ahmad. 2012. Synthesis and characterization of NiO nanoparticles by thermal decomposition of nickel linoleate and their optical properties. Materials Characterization 68:77–81. doi:10.1016/j.matchar.2012.03.011.
  • Khoshandam, B., E. Jamshidi, and R. V. Kumar. 2004. Reduction of cobalt oxide with methane. Metallurgical and Materials Transactions B 35 (5):825–8. doi:10.1007/s11663-004-0076-7.
  • Libor, Z., and Q. Zhang. 2009. The synthesis of nickel nanoparticles with controlled morphology and SiO2/Ni core-shell structures. Materials Chemistry and Physics 114 (2–3):902–7. doi:10.1016/j.matchemphys.2008.10.068.
  • Lucchini, M. A., A. Testino, C. Ludwig, A. Kambolis, M. El-Kazzi, A. Cervellino, P. Riani, and F. Canepa. 2014. Continuous synthesis of nickel nanopowders: Characterization, process optimization, and catalytic properties. Applied Catalysis B: Environmental 156–157:404–15. doi:10.1016/j.apcatb.2014.03.045.
  • Neiva, E. G. C., M. M. Oliveira, L. H. Marcolino, and A. J. G. Zarbin. 2016. Nickel nanoparticles with hcp structure: Preparation, deposition as thin films and application as electrochemical sensor. Journal of Colloid and Interface Science 468:34–41. doi:10.1016/j.jcis.2016.01.036.
  • Rajput, N. J., 2015. Methods of preparation of nanoparticles – a review. International Journal of Advances in Engineering and Technology 7:1806–11.
  • Rashidi, H., H. Ale Ebrahim, and B. Dabir. 2013. Application of random pore model for synthesis gas production by nickel oxide reduction with methane. Energy Conversion and Management 74:249–60. doi:10.1016/j.enconman.2013.04.044.
  • Rashidi, H., H. A. Ebrahim, and B. Dabir. 2013. Reduction kinetics of nickel oxide by methane as reducing agent based on thermogravimetry. Thermochimica Acta 561:41–8. doi:10.1016/j.tca.2013.03.014.
  • Roselina, N. R. N., and A. Azizan. 2012. Ni nanoparticles: Study of particles formation and agglomeration. Procedia Engineering 41:1620–6. doi:10.1016/j.proeng.2012.07.359.
  • Salhi, N., A. Boulahouache, C. Petit, A. Kiennemann, and C. Rabia. 2011. Steam reforming of methane to syngas over NiAl2O4 spinel catalysts. International Journal of Hydrogen Energy 36 (17):11433–9. doi:10.1016/j.ijhydene.2010.11.071.
  • Samyn, P., A. Barhoum, T. Öhlund, and A. Dufresne. 2018. Review: nanoparticles and nanostructured materials in papermaking. Journal of Materials Science 53 (1):146–84. doi:10.1007/s10853-017-1525-4.
  • Shin, Y. K., L. Gai, S. Raman, and A. C. T. van Duin. 2016. Development of a ReaxFF reactive force field for the Pt–Ni alloy catalyst. The Journal of Physical Chemistry A 120 (41):8044–55. doi:10.1021/acs.jpca.6b06770.
  • Szekely, J., J. W. Evans, and H. Y. Sohn. 1976a. Gas-solid reactions. New York: Academic Press.
  • Szekely, J., J. W. Evans, and H. Y. Sohn. 1976b. Chapter 6 – experimental techniques for the study of gas—solid reactions. In Gas-solid reactions, ed. Julian Szekely, James W. Evans, and Hong Yong Sohn, 205–247. New York: Academic Press.
  • Tzitzios, V., G. Basina, M. Gjoka, V. Alexandrakis, V. Georgakilas, D. Niarchos, N. Boukos, and D. Petridis. 2006. Chemical synthesis and characterization of hcp Ni nanoparticles. Nanotechnology 17 (15):3750. doi:10.1088/0957-4484/17/15/023.
  • Usman, M., W. M. A. Wan Daud, and H. F. Abbas. 2015. Dry reforming of methane: Influence of process parameters—a review. Renewable and Sustainable Energy Reviews 45:710–44. doi:10.1016/j.rser.2015.02.026.
  • Vijayakumar, N. S., N. A. L. Flower, B. Brabu, C. Gopalakrishnan, and S. V. Kasmir Raja. 2013. Degradation of DCE and TCE by Fe–Ni nanoparticles immobilised polysulphone matrix. Journal of Experimental Nanoscience 8 (7–8):890–900. doi:10.1080/17458080.2011.620017.
  • Wang, D.-P., D.-B. Sun, H.-Y. Yu, and H.-M. Meng. 2008. Morphology controllable synthesis of nickel nanopowders by chemical reduction process. Journal of Crystal Growth 310 (6):1195–201. doi:10.1016/j.jcrysgro.2007.12.052.
  • Wei, Z., P. Yan, W. Feng, J. Dai, Q. Wang, and T. Xia. 2006. Microstructural characterization of Ni nanoparticles prepared by anodic arc plasma. Materials Characterization 57 (3):176–81. doi:10.1016/j.matchar.2006.01.004.
  • Wu, Z. G., M. Munoz, and O. Montero. 2010. The synthesis of nickel nanoparticles by hydrazine reduction. Advanced Powder Technology 21 (2):165–8. doi:10.1016/j.apt.2009.10.012.
  • Yasir Rafique, M., L. Pan, and A. Farid. 2016. From nano-dendrite to nano-sphere of Co100 − xNix alloy: Composition dependent morphology, structure and magnetic properties. Journal of Alloys and Compounds 656:443–51. doi:10.1016/j.jallcom.2015.09.263.
  • Yonezawa, T. 2012. Nickel alloys: Properties and characteristics. Comprehensive Nuclear Materials. 2:233–266. doi:10.1016/B978-0-08-056033-5.00016-1
  • Zhao, Y., Y. Wang, F. Ran, Y. Cui, C. Liu, Q. Zhao, Y. Gao, D. Wang, and S. Wang. 2017. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Scientific Reports 7 (1):4131. doi:10.1038/s41598-017-03834-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.