290
Views
15
CrossRef citations to date
0
Altmetric
Articles

Comparative study of the batch adsorption kinetics and mass transfer in phenol-sand and phenol-clay adsorption systems

, , &
Pages 801-811 | Received 19 Jun 2018, Accepted 06 May 2019, Published online: 21 May 2019

References

  • Agarry, S. E., and M. O. Aremu. 2012. Batch equilibrium and kinetic studies of simultaneous adsorption and biodegradation of phenol by pineapple peels immobilized Pseudomonas aeruginosa NCIB 950. British Biotechnology Journal 2 (1):26–48. doi:10.9734/BBJ/2012/902.
  • Agarry, S. E., O. O. Ogunleye, and O. A. Aworanti. 2013a. Biosorption equilibrium, kinetic and thermodynamic modelling of naphthalene removal from aqueous solution onto modified spent tea leaves. Environmental Technology 34 (7):825–39. doi:10.1080/09593330.2012.720616.
  • Agarry, S. E., C. N. Owabor, and A. O. Ajani. 2013b. Modified plantain peel as cellulose-based low-cost adsorbent for the removal of 2, 6–dichlorophenol from aqueous solution: Adsorption isotherms, kinetic modelling and thermodynamic studies. Chemical Engineering Communications 200 (8):1121–47. doi:10.1080/00986445.2012.740534.
  • Agarry, S. E., B. O. Solomon, and S. K. Layokun. 2008. Kinetics of batch microbial degradation of phenols by indigenous binary mixed culture of Pseudomonas aeruginosa and Pseudomonas fluorescence. African Journal of Biotechnology 7 (14):2417–23.
  • Aksu, Z. 2005. Application of biosorption for the removal of organic pollutants: A review. Process Biochemistry 40 (3-4):997–1026. doi: 10.1016/j.procbio.2004.04.008.
  • Alinnor, I. J. 1., and Nwachukwu, M. A. 2011. A study on removal characteristics of para-nitrophenol from aqueous solution by fly ash. Journal of Environmental Chemistry and Ecotoxicology 3 (2):32–36.
  • Altun, T., and E. Pehlivan. 2012. Removal of Cr (VI) from aqueous solutions by modified walnut shells. Food Chemistry 132 (2):693. doi:10.1016/j.foodchem.2011.10.099.
  • Anisuzzaman, S. M., C. G. Joseph, Y. H. Taufiq-Yap, D. Krishnaiah, and V. V. Tay. 2015. Modification of commercial activated carbon for the removal of 2,4-dichlorophenol from simulated wastewater. Journal of King Saud University – Science 27 (4):318–30. doi:10.1016/j.jksus.2015.01.002.
  • Arasteh, R., M. Masoumi, A. M. Rashidi, L. Moradi, V. Samimi, and S. T. Mostafavi. 2010. Adsorption of 2-nitrophenol by multiwall carbon nanotubes from aqueous solutions. Applied Surface Science 256 (14):4447–55. doi:10.1016/j.apsusc.2010.01.057.
  • ASTM. 2004. Annual book of ASTM standards soil and rock. USA: ASTM International.
  • Atun, G. 1992. The adsorption of nitrophenols on a special adsorbent prepared from glass powder. Spectroscopy Letters 25 (5):741–56. doi: 10.1080/00387019208020706.
  • Banerjee, S., and M. C. Chattopadhyaya. 2017. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian Journal of Chemistry 10:S1629–S1638. doi:10.1016/j.arabjc.2013.06.005.
  • Banerjee, S., S. Dubey, R. K. Gautam, M. C. Chattopadhyaya, and Y. C. Sharma. 2017. Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2016.12.016.
  • Bertoncini, C., J. Raffaelli, L. Fassino, H. S. Odetti, and E. J. Bottani. 2003. Phenol adsorption on porous and non-porous carbons. Carbon 41 (6):1101–11. doi:10.1016/S0008-6223(03)00015-0.
  • Boyd, G. E., A. W. Adamson, and L. S. Myers. 1947. The exchange adsorption of ions from aqueous solution by organic zeolites. II Kinetics. Journal of the American Chemical Society 69 (11):2836–48. doi:10.1021/ja01203a066.
  • Choong, T. S. Y., T. N. Wong, T. G. Chuah, and A. Idris. 2006. Film pore-concentration-dependent surface diffusion model for the adsorption of dye onto palm kernel shell activated carbon. Journal of Colloid and Interface Science 301 (2):436–40. doi:10.1016/j.jcis.2006.05.033.
  • Dawodu, F. A., and K. G. Akpomie. 2014. Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay. Journal of Materials Research and Technology 3 (2):129–41. doi:10.1016/j.jmrt.2014.03.002.
  • Djebbar, M., F. Djafri, M. Bouchekara, and A. Djafri. 2012. Adsorption of phenol on natural clay. African Journal of Pure and Applied Chemistry 6 (2):15–25.
  • El-Shamy, A. M., H. K. Farag, and W. M. Saad. 2017. Comparative study of removal of heavy metals from industrial wastewater using clay and activated carbon in batch and continuous flow systems. Egyptian Journal of Chemistry 60 (6):1165–75. doi:10.21608/ejchem.2017.1606.1128.
  • Erdogan, E. B. 2011. Cr (VI) Removal with natural, surfactant modified and bacteria loaded zeolites. An unpublished PhD thesis submitted to the Graduate School of Engineering and Sciences of Izmir Institute of Technology.
  • Ghogomu, J. N., D. T. Noufame, E. B. N. Tamungang, D. L. Ajifack, J. N. Ndi, and J. M. Ketcha. 2014. Adsorption of phenol from aqueous solutions onto natural and thermally-modified kaolinitic materials. International Journal of Biological and Chemical Sciences 8 (5):2325–38. doi:10.4314/ijbcs.v8i5.35.
  • Girish, C., and V. M. Ramachandra. 2016. Mass transfer studies on adsorption of phenol from wastewater using Lantana camara, forest waste. International Journal of Chemical Engineering 6 (2):11. doi: 10.1155/2016/5809505.
  • Gładysz-Płaska, A. 2017. Application of modified clay for removal of phenol and PO4−3 ions from aqueous solutions. Adsorption Science & Technology 35 (7-8):692–9. doi:10.1177/0263617417704774.
  • Hamdaoui, M., M. Hadri, Z. Bencheqroun, K. Draoui1, M. Nawdali, H. Zaitan, and A. Barhoun. 2018. Improvement of phenol removal from aqueous medium by adsorption on organically functionalized Moroccan stevensite. Journal of Materials and Environmental Science 9 (4):1119–27.
  • Hameed, B. H., I. A. Tan, and A. L. Ahmad. 2009. Preparation of oil palm empty fruit bunch-based activated carbon for removal of 2,4,6-trichlorophenol: Optimization using response surface methodology. Journal of Hazardous Materials 164 (2-3):1316–24. doi:10.1016/j.jhazmat.2008.09.042.
  • Issabayeva, G., S. Y. Hang, M. C. Wong, and M. K. Aroua. 2017. A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents. Reviews in Chemical Engineering 34 (6):855–73. doi:10.1515/revce-2017-0007.
  • Karimaian, K. A., A. Amrane, H. Kazemian, R. Panahi, and M. Zarrabi. 2013. Retention of phosphorous ions on natural and engineered waste pumice: Characterization, equilibrium, competing ions, regeneration, kinetic, equilibrium and thermodynamic study. Applied Surface Science 284:419–31. doi:10.1016/j.apsusc.2013.07.114.
  • Khalid, M., G. Joly, A. Renaud, and P. Magnoux. 2004. Removal of phenol from water by adsorption using zeolites. Industrial & Engineering Chemistry Research 43 (17):5275–80. doi:10.1021/ie0400447.
  • Kumar, K. V., and K. Porkodi. 2007. Mass transfer, kinetics and equilibrium studies for the biosorption of methylene blue using Paspalum notatum. Journal of Hazardous Materials 146 (1–2):214–26. doi:10.1016/j.jhazmat.2006.12.010.
  • Li, Y., B. Xia, Q. Zhao, F. Liu, P. Zhang, Q. Du, D. Wang, D. Li, Z. Wang, and Y. Xia. 2011. Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin. Journal of Environmental Science 23 (3):404–11.
  • Lukman, S., M. H. Essa, N. D. MùAzu, A. Bukhari, and C. Basheer. 2013. Adsorption and desorption of heavy metals onto natural clay material: Influence of initial pH. Journal of Environmental Science and Technology 6 (1):1–15. doi:10.3923/jest.2013.1.15.
  • Madejova, J. 2003. FTIR techniques in clay mineral studies. Vibrational Spectroscopy 31:1–10.
  • Mohanty, K., D. Das, and M. N. Biswas. 2005. Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chemical Engineering Journal 115 (1-2):121–31. doi:10.1016/j.cej.2005.09.016.
  • Nanseu-Njiki, C. P., G. K. Dedzo, and E. Ngameni. 2010. Study of the removal of paraquat from aqueous solution by biosorption onto Ayous (Triplochiton schleroxylon) sawdust. Journal of Hazardous Materials 179 (1-3):63–71. doi:10.1016/j.jhazmat.2010.02.058.
  • Obi, C., and J. Okye. P., 2014. Kinetic evaluation of naphthalene removal using acid - modified and unmodified bentonite clay mineral. Journal of Applied Sciences and Environmental Management 18 (1):143–9. doi:10.4314/jasem.v18i1.20.
  • Osagie, E. I., and C. N. Owabor. 2015. Adsorption of naphthalene on clay and sandy soil from aqueous solution. Advances in Chemical Engineering and Science 5:345–351. doi:10.4236/aces.2015.53036.
  • Owabor, C. N., S. E. Agarry, B. V. Ayodele, S. I. Udeh, and E. Ehiosun. 2013. Comparative study of the adsorption and desorption behavior of single and multi-ring aromatics in sediment fractions. Advances in Chemical Engineering and Science 03 (01):67–73. doi: 10.4236/aces.2013.31007.
  • Pal, S., S. Mukherjee, and S. Ghosh. 2014. Nonlinear kinetic analysis of phenol adsorption onto peat soil. Environmental Earth Sciences 71 (4):1593. doi:10.1007/s12665-013-2564-z.
  • Pandey, P. K., S. K. Sharma, and S. S. Sambi. 2010. Kinetics and equilibrium study of chromium adsorption on zeolite NaX. International Journal of Environmental Science & Technology 7 (2):395–404. doi: 10.1007/BF03326149.
  • Potgieter, J. H., S. O. Bada, and S. S. Potgieter-Vermaak. 2009. Adsorptive removal of various phenols from water by South African coal fly ash. Water SA 35 (1):89–96.
  • Prasad, R. K., and S. N. Srivastava. 2009. Sorption of distillery spent wash onto fly ash: Kinetics and mass transfer studies. Chemical Engineering Journal 146 (1):90–7. doi:10.1016/j.cej.2008.05.021.
  • Priyantha, N., A. N. Navaratne, and T. P. K. Kulasooriya. 2018. Investigation on adsorption kinetics on heavy metals by rice husk. Journal of the National Science Foundation of Sri Lanka 46 (2):125–41. doi:10.4038/jnsfsr.v46i2.8413.
  • Quek, A., and R. Balasubramanian. 2011. Removal of copper by oxygenated pyrolytic tire char: Kinetics and mechanistic insights. Journal of Colloid and Interface Science 356 (1):203–10. doi:10.1016/j.jcis.2010.12.025.
  • Rahman, M. S., and K. V. Sathasivam. 2016. Heavy metal biosorption potential of a Malaysian Rhodophyte (Eucheuma denticulatum) from aqueous solutions. International Journal of Environmental Science and Technology 13 (8):1973–88. doi:10.1007/s13762-016-1022-3.
  • Rashed, M. N. 2013. Adsorption Technique for the Removal of Organic Pollutants (from Water and Wastewater, 167–195). http://www.intechopen.com/books/organic-pollutants-monitoringrisk-and-treatment. doi:10.5772/54048.
  • Reichenberg, D. 1953. Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. Journal of the American Chemical Society 75 (3):589–97. doi:10.1021/ja01099a022.
  • Sadasivam, S., K. S. Kandasamy, K. Ponnusamy, G. S. Nagarajan, and T. W. Kang. 2011. Film diffusion mechanism of methyl parathion in biopolymers: Kinetics and thermodynamic equilibrium. Journal of Chemical & Engineering Data 56 (11):4024–30. doi:10.1021/je200424x.
  • Shao, Y., H. Zhang, and Y. J. Yan. 2014. Characterization of P-nitrophenol adsorption kinetic properties in batch and fixed bed adsorbers. Journal of Wuhan University of Technology-Materials Science Edition. 29 (6):1152–60. doi:10.1007/s11595-014-1058-5.
  • Sharma, Y. C., U. S. N. Uma, and C. H. Weng. 2008. Studies on an economically viable remediation of chromium rich waters and wastewaters by PTPS fly ash. Colloid Surface A: Physicochemical and Engineering Aspects 317 (1–3):222–8.
  • Shirzad-Siboni, M., S.-J. Jafari, M. Farrokhi, and J. K. Yang. 2013. Removal of phenol from aqueous solutions by activated red mud: Equilibrium and kinetics studies. Environmental Engineering Research 18 (4):247–52. doi:10.4491/eer.2013.18.4.247.
  • Subramanyam, B., and D. Ashutosh. 2012. Adsorption isotherm modeling of phenol onto natural soils–applicability of various isotherm models. International Journal of Environmental Research 6 (1):265–76.
  • Suresh, S. 2016. Removal of Basic Violet 14 from aqueous solution using sulphuric acid activated materials. SpringerPlus 5:633–46.
  • Teixeira, R. N. P., V. D. S. Neto, J. T. Oliveira, T. C. Oliveira, D. Q. Melo, M. A. A. Silva, and R. F. Nascimento. 2013. Study on the use of roasted barley powder for adsorption of Cu2+ ions in batch experiments and in fixed bed columns. Bioresources 8 (3):3556–73.
  • Traegner, U. K., and M. T. Suidan. 1989. Parameter evaluation for carbon adsorption. Journal of Environmental Engineering 115 (1):109–1.
  • Unuabonah, E. I., B. I. Olu-Owolabi, L. Böhm, R-A. Düring. 2016. Adsorption of polynuclear aromatic hydrocarbons from aqueous solution: agro waste-modified kaolinite vs surfactant modified bentonite. Bulletin of Chemical Society Ethiopia 30(3): 369–376.
  • Vinhala, J. O., K. K. Nege, M. R. Lage, J. W. Carneiro, M. de, C. F. Lima, and R. J. Cassella. 2017. Adsorption of the herbicides diquat and difenzoquat on polyurethane foam: Kinetic, equilibrium and computational studies. Ecotoxicology and Environmental Safety 145:597–604. doi:10.1016/j.ecoenv.2017.08.005.
  • Walker, G. M., L. Hansen, J.-A. Hanna, and S. J. Allen. 2003. Kinetics of a reactive dye adsorption onto dolomitic sorbents. Water Research 37 (9):2081–9. doi:10.1016/S0043-1354(02)00540-7.
  • Wang, L., J. Zhang, R. Zhao, C. Zhang, C. Li, and Y. Li. 2011. Adsorption of 2,4-dichlorophenol on Mn-modified activated carbon prepared from Polygonum orientale Linn. Desalination 266 (1–3):175–81. doi:10.1016/j.desal.2010.08.022.
  • Wu, P. X., W. Liao II, H. F. Zhang, J. G. Guo. 2001. Adsorption of phenol on inorganic-organic pillared montmorillonite in polluted water. Environmental International 26: 401–407.
  • Yao, C., and T. Chen. 2017. A film-diffusion-based adsorption kinetic equation and its application. Chemical Engineering Research and Design 119:87–92.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.