357
Views
22
CrossRef citations to date
0
Altmetric
Articles

Cr(VI) adsorption on low-cost activated carbon developed from grape marc-vinasse mixture

ORCID Icon, &
Pages 768-781 | Received 15 Mar 2019, Accepted 11 Jun 2019, Published online: 11 Jul 2019

References

  • Acharya, J., J. N. Sahu, B. K. Sahoo, C. R. Mohanty, and B. C. Meikap. 2009. Removal of chromium (VI) from wastewater by activated carbon developed from tamarind wood activated with zinc chloride. Chemical Engineering Journal 150 (1):25–39. doi:10.1016/j.cej.2008.11.035.
  • Aggarwal, D., M. Goyal, and R. C. Bansal. 1999. Adsorption of chromium by activated carbon from aqueous solution. Carbon 37 (12):1989–97. doi:10.1016/S0008-6223(99)00072-X.
  • Alaerts, G. J., V. Jitjaturunt, and P. Kelderman. 1989. Use of coconut shell-based activated carbon for chromium (VI) removal. Water Science and Technology 21 (12):1701–4. doi:10.2166/wst.1989.0148.
  • Al-Othman, Z. A., R. Ali, and M. Naushad. 2012. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies. Chemical Engineering Journal 184:238–47. doi:10.1016/j.cej.2012.01.048.
  • Altundogan, H. S., N. E. Arslan, and F. Tumen. 2007. Copper removal from aqueous solutions by sugar beet pulp treated by NaOH and citric acid. Journal of Hazardous Materials 149 (2):432–9. doi:10.1016/j.jhazmat.2007.04.008.
  • Altundogan, H. S., N. Bahar, B. Mujde, and F. Tumen. 2007. The use of sulphuric acid-carbonization products of sugar beet pulp in Cr (VI) removal. Journal of Hazardous Materials 144 (1–2):255–64. doi:10.1016/j.jhazmat.2006.10.018.
  • Anirudhan, T. S., and P. G. Radhakrishnan. 2008. Thermodynamics and kinetics of adsorption of Cu (II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell. The Journal of Chemical Thermodynamics 40 (4):702–9. doi:10.1016/j.jct.2007.10.005.
  • Anonymous. 1980. European Community Directive, 80/778/EEC, L229/20, D48. Brussels.
  • Anonymous 1989. Standard methods for examination of water and wastewater. 17th ed. Washington, DC: American Public Health Association/Port City Press.
  • Anupam, K., S. Dutta, C. Bhattacharjee, and S. Datta. 2011. Adsorptive removal of chromium (VI) from aqueous solution over powdered activated carbon: Optimisation through response surface methodology. Chemical Engineering Journal 173 (1):135–43. doi:10.1016/j.cej.2011.07.049.
  • Arslanoğlu, H. 2016. Development of a process for producing slow released potassium-struvite fertilizer from vinasse and grape Marc. PhD thesis, Firat University, Turkey (In Turkish).
  • Bishnoi, N. R., M. Bajaj, N. Sharma, and A. Gupta. 2004. Adsorption of Cr (VI) on activated rice husk carbon and activated alumina. Bioresource Technology 91 (3):305–7. doi:10.1016/S0960-8524(03)00204-9.
  • Chandra, T. C., M. M. Mirna, J. Sunarso, Y. Sudaryanto, and S. Ismadji. 2009. Activated carbon from durian shell: Preparation and characterization. Journal of the Taiwan Institute of Chemical Engineers 40 (4):457–62. doi:10.1016/j.jtice.2008.10.002.
  • Chang, Y. Y., J. W. Lim, and J. K. Yang. 2012. Removal of As (V) and Cr (VI) in aqueous solution by sand media simultaneously coated with Fe and Mn oxides. Journal of Industrial and Engineering Chemistry 18 (1):188–92. doi:10.1016/j.jiec.2011.11.002.
  • Chergui, A., M. Z. Bakhti, A. Chahboub, S. Haddoum, A. Selatnia, and G. A. Junter. 2007. Simultaneous bioadsorption of Cu2+, Zn2+ and Cr6+ from aqueous solution by Streptomyces rimosus biomass. Desalination 206 (1–3):179–84. doi:10.1016/j.desal.2006.03.566.
  • De Gisi, S., G. Lofrano, M. Grassi, and M. Notarnicola. 2016. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies 9:10–40. doi:10.1016/j.susmat.2016.06.002.
  • Demiral, H., I. Demiral, F. Tümsek, and B. Karabacakoğlu. 2008. Adsorption of chromium (VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chemical Engineering Journal 144 (2):188–96. doi:10.1016/j.cej.2008.01.020.
  • Demirbas, E., N. Dizge, M. T. Sulak, and M. Kobya. 2009. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chemical Engineering Journal 148 (2–3):480–7. doi:10.1016/j.cej.2008.09.027.
  • Di, Z. C., Y. H. Li, Z. K. Luan, and J. Liang. 2004. Adsorption of chromium (VI) ions from water by carbon nanotubes. Adsorption Science and Technology 22:467–74. doi:10.1260/0263617042879537.
  • Doğan, M., and M. Alkan. 2003. Removal of methyl violet from aqueous solution by perlite. Journal of Colloid and Interface Science 267 (1):32–41. doi:10.1016/S0021-9797(03)00579-4.
  • Dubinin, M. M., and L. V. Radushkevich. 1947. The equation of the characteristic curve of the activated charcoal. Proceedings of the Academy of Sciences, Physical Chemistry Section of the USSR 55:331–7.
  • El-Hendawy, A. N. A., S. E. Samra, and B. S. Girgis. 2001. Adsorption characteristics of activated carbons obtained from corncobs. Colloids and Surfaces A: Physicochemical and Engineering Aspects 180 (3):209–21. doi:10.1016/S0927-7757(00)00682-8.
  • Freundlich, H. 1907. Ueber die Adsorption in Loesungen. Zeitschrift Für Physikalische Chemie 57:385–470.
  • Gautam, R. K., and Chattopadhyaya, M. C. (Eds.). 2016. Advanced nanomaterials for wastewater remediation. Boca Raton/USA: CRC Press.
  • Geçgel, Ü., G. Özcan, and G. Ç. Gürpınar. 2013. Removal of methylene blue from aqueous solution by activated carbon prepared from pea shells (Pisum sativum). Journal of Chemistry 2013:1. doi:10.1155/2013/614083.
  • Giles, C. H., D. Smith, and A. Huitson. 1974. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of Colloid and Interface Science 47 (3):755–65. doi:10.1016/0021-9797(74)90252-5.
  • Gorzin, F., and M. M. Bahri Rasht Abadi. 2017. Adsorption of Cr (VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorption Science and Technology 36:1–21. doi:10.1177/0263617416686976.
  • Hall, K. R., L. C. Eagleton, A. Acrivos, and T. Vermeulen. 1966. Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial & Engineering Chemistry Fundamentals 5 (2):212–223.
  • Hamadi, N. K., X. D. Chen, M. M. Farid, and M. G. Q. Lu. 2001. Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chemical Engineering Journal 84 (2):95–105. doi:10.1016/S1385-8947(01)00194-2.
  • Hameed, B. H., A. M. Din, and A. L. Ahmad. 2007. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials 141 (3):819–25. doi:10.1016/j.jhazmat.2006.07.049.
  • Han, F. X. 2007. Biogeochemistry of trace elements in arid environments. Vol. 13. Dordrecht/Netherlands: Springer Science and Business Media.
  • Hanif, M. A., R. Nadeem, M. N. Zafar, K. Akhtar, and H. N. Bhatti. 2007. Kinetic studies for Ni (II) bioadsorption from industrial wastewater by Cassia fistula (Golden Shower) biomass. Journal of Hazardous Materials 145 (3):501–5. doi:10.1016/j.jhazmat.2007.01.022.
  • Heuss-Aßbichler, S., M. John, D. Klapper, U. W. Bläß, and G. Kochetov. 2016. Recovery of copper as zero-valent phase and/or copper oxide nanoparticles from wastewater by ferritization. Journal of Environmental Management 181:1–7. doi:10.1016/j.jenvman.2016.05.053.
  • Hobson, J. P. 1969. Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure. The Journal of Physical Chemistry 73 (8):2720–7. doi:10.1021/j100842a045.
  • Hu, Z., L. Lei, Y. Li, and Y. Ni. 2003. Chromium adsorption on high-performance activated carbons from aqueous solution. Separation and Purification Technology 31 (1):13–8. doi:10.1016/S1383-5866(02)00149-1.
  • Huang, G., J. X. Shi, and T. A. Langrish. 2009. Removal of Cr (VI) from aqueous solution using activated carbon modified with nitric acid. Chemical Engineering Journal 152 (2–3):434–9. doi:10.1016/j.cej.2009.05.003.
  • Inglezakis, V. J., and A. A. Zorpas. 2012. Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalination and Water Treatment 39:149–57. doi:10/5004/dwt.2012.3000.
  • Kan, C. C., A. H. Ibe, K. K. P. Rivera, R. O. Arazo, and M. D. G. de Luna. 2017. Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals. Sustainable Environment Research 27 (4):163–71. doi:10.1016/j.serj.2017.04.001.
  • Karthikeyan, T., S. Rajgopal, and L. R. Miranda. 2005. Chromium(VI) adsorption from aqueous solution by Hevea brasiliensis sawdust activated carbon. Journal of Hazardous Materials 124 (1–3):192–9. doi:10.1016/j.jhazmat.2005.05.003.
  • Kobya, M. 2004. Removal of Cr (VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: Kinetic and equilibrium studies. Bioresource Technology 91 (3):317–21. doi:10.1016/j.biortech.2003.07.001.
  • Labied, R., O. Benturki, A. Y. Eddine Hamitouche, and A. Donnot. 2018. Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study. Adsorption Science and Technology 36:1–34. doi:10.1177/0263617417750739.
  • Lagergren, S. 1898. Zur theorie der sogenannten adsorption geloster stoffe, Kongliga Svenska Vetenskapsakademiens. Handlingar 24:1–39.
  • Langmuir, I. 1918. Adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40 (9):1361–403. doi:10.1021/ja02242a004.
  • Liu, S. X., X. Chen, X. Y. Chen, Z. F. Liu, and H. L. Wang. 2007. Activated carbon with excellent chromium (VI) adsorption performance prepared by acid–base surface modification. Journal of Hazardous Materials 141(1):315–9. doi:10.1016/j.jhazmat.2006.07.006.
  • Liu, W., J. Zhang, C. Zhang, Y. Wang, and Y. Li. 2010. Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from Trapa natans husk. Chemical Engineering Journal 162 (2):677–84. doi:10.1016/j.cej.2010.06.020.
  • McKay, G., and Y. S. Ho. 1999. Pseudo-second order model for adsorption processes. Process Biochemistry 34:451–65. doi:10.1016/S0032-9592(98)00112-5.
  • Mohan, D., and S. Chander. 2006. Single, binary, and multicomponent adsorption of iron and manganese on lignite. Journal of Colloid and Interface Science 299 (1):76–87. doi:10.1016/j.jcis.2006.02.010.
  • Mohanty, K., M. Jha, B. C. Meikap, and M. N. Biswas. 2005. Removal of chromium (VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chemical Engineering Science 60 (11):3049–59. doi:10.1016/j.ces.2004.12.049.
  • Moreno-Piraján, J. C., and L. Giraldo. 2010. Adsorption of copper from aqueous solution by activated carbons obtained by pyrolysis of cassava peel. Journal of Analytical and Applied Pyrolysis 87 (2):188–93. doi:10.1016/j.jaap.2009.12.004.
  • Okuda, T. 1975. Removal of heavy metals from wastewaters by ferrite coprecipitation. Filtration and Separation 12:472–476.
  • Ouazene, N., and M. N. Sahmoune. 2010. Equilibrium and kinetic modelling of astrazon yellow adsorption by sawdust: Effect of important parameters. International Journal of Chemical Reactor Engineering 8 (1):1–8. doi:10.2202/1542-6580.2413.
  • Özcan, A., A. S. Özcan, S. Tunali, T. Akar, and I. Kiran. 2005. Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper (II) ions onto seeds of Capsicum annuum. Journal of Hazardous Materials 124:200–8. doi:10.1016/j.jhazmat.2005.05.007.
  • Özçimen, D., and A. Ersoy-Meriçboyu. 2009. Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons. Journal of Hazardous Materials 168 (2–3):1118–25. doi:10.1016/j.jhazmat.2009.02.148.
  • Rafatullah, M., O. Sulaiman, R. Hashim, and A. Ahmad. 2010. Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials 177 (1–3):70–80. doi:10.1016/j.jhazmat.2009.12.047.
  • Rao, M. M., A. Ramesh, G. P. C. Rao, and K. Seshaiah. 2006. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Journal of Hazardous Materials 129:123–9. doi:10.1016/j.jhazmat.2005.08.018.
  • Romero, L. C., A. Bonomo, and E. E. Gonzo. 2004. Peanut shell activated carbon: Adsorption capacities for copper (II), zinc (II), nickel (II) and chromium (VI) ions from aqueous solutions. Adsorption Science and Technology 22 (3):237–43. doi:10.1260/0263617041503499.
  • Saha, P. 2010. Assessment on the removal of methylene blue dye using tamarind fruit shell as biosorbent. Water, Air, & Soil Pollution 213 (1–4):287–299.
  • Selomulya, C., V. Meeyoo, and R. Amal. 1999. Mechanisms of Cr (VI) removal from water by various types of activated carbons. Journal of Chemical Technology and Biotechnology 74 (2):111–22. doi:10.1002/(SICI)1097-4660(199902)74:2<111::AID-JCTB990>3.0.CO;2-D.
  • Sharma, S. K. (Ed.). 2015. Green chemistry for dyes removal from waste water: Research trends and applications. Salem/Canada: John Wiley and Sons.
  • Sharma, Y. C. 2012. A guide to the economic removal of metals from aqueous solutions. Salem/Canada: John Wiley and Sons.
  • Sing, K. S., and R. T. Williams. 2004. Physiadsorption hysteresis loops and the characterization of nanoporous materials. Adsorption Science and Technology 22 (10):773–82. doi:10.1260/0263617053499032.
  • Singha, B., and S. K. Das. 2011. Biosorption of Cr (VI) ions from aqueous solutions: Kinetics, equilibrium, thermodynamics and desorption studies. Colloids and Surfaces B: Biointerfaces 84 (1):221–32. doi:10.1016/j.colsurfb.2011.01.004.
  • Sirajudeen, J., and J. Naveen. 2015. Effect of pH and adsorbent dosage on the removal of hexavalent chromium from its aqueous solution by activated carbon of pachygone ovata. World Journal of Pharmaceutical Sciences 3:1987–90.
  • Solgi, M., T. Najib, S. Ahmadnejad, and B. Nasernejad. 2017. Synthesis and characterization of novel activated carbon from Medlar seed for chromium removal: Experimental analysis and modeling with artificial neural network and support vector regression. Resource-Efficient Technologies 3 (3):236–48. doi:10.1016/j.reffit.2017.08.003.
  • Thommes, M. 2010. Physical adsorption characterization of nanoporous materials. Chemie Ingenieur Technik 82 (7):1059–73. doi:10.1002/cite.201000064.
  • Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing. 2015. Physiadsorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87 (9–10):1051–69. doi:10.1515/pac-2014-1117.
  • Troxler, S., E. Knettig, and D. W. Smith. 1988. Powdered Activated Carbon Selection, Environmental Engineering. Technical Report 88-1, prepared for Water and Sanitation, City of Edmonton, Canada, Department of Civil Engineering, University of Alberta.
  • Tümen, F. 2016. Development of a process for producing slow released potassium-struvite fertilizer from vinasse and grape Marc, TUBITAK Project No: 113M250 (In Turkish).
  • USEPA. 2012. Drinking water standards and health advisories. www.epa.gov/sites/production/files/2015-09/documents/dwstandards2012.pdf. (accessed May 12, 2018).
  • Verma, A., S. Chakraborty, and J. K. Basu. 2006. Adsorption study of hexavalent chromium using tamarind hull-based adsorbents. Separation and Purification Technology 50 (3):336–41. doi:10.1016/j.seppur.2005.12.007.
  • Wang, W.,. X. Wang, X. Wang, L. Yang, Z. Wu, S. Xia, and J. Zhao. 2013. Cr (VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave. Journal of Environmental Sciences 25 (9):1726–35. doi:10.1016/S1001-0742(12)60247-2.
  • Warhurst, A. M., G. L. McConnachie, and S. J. Pollard. 1997. Characterisation and applications of activated carbon produced from Moringa oleifera seed husks by single-step steam pyrolysis. Water Research 31 (4):759–66. doi:10.1016/S0043-1354(97)80989-X.
  • Weber, T. W., and R. K. Chakravorti. 1974. Pore and solid diffusion models for fixed‐bed adsorbers. AIChE Journal 20 (2):228–38. doi:10.1002/aic.690200204.
  • Weber, W. J., and J. C. Morris. 1963. Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division ASCE 89:31–60.
  • Yang, J., M. Yu, and W. Chen. 2015. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics. Journal of Industrial and Engineering Chemistry 21:414–22. doi:10.1016/j.jiec.2014.02.054.
  • Zhang, Y., F. Yu, W. Cheng, J. Wang, and J. Ma. 2017. Adsorption equilibrium and kinetics of the removal of ammoniacal nitrogen by zeolite X/activated carbon composite synthesized from elutrilithe. Journal of Chemistry 2017:1–9. doi:10.1155/2017/1936829.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.