225
Views
5
CrossRef citations to date
0
Altmetric
Articles

Enhanced reversible hydrogen storage in palladium hollow spheres

, , , , &

References

  • Abe, J., A. Popoola, E. Ajenifuja, and O. Popoola. 2019. Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy 44 (29):15072–86. doi:10.1016/j.ijhydene.2019.04.068.
  • Adele, S. 2009. Elasticity: Theory and Applications. FL, USA: J. Ross Publishing.
  • Baranowski, B., S. Majchrzak, and T. Flanagan. 1971. The increase of FCC metals and alloys due to interstitial hydrogen over a wide range of hydrogen contents. Journal of Physics F: Metal Physics 1 (3):258–61. doi:10.1088/0305-4608/1/3/307.
  • Cappillino, P. J., K. M. Hattar, B. G. Clark, R. J. Hartnett, V. Stavila, M. A. Hekmaty, B. W. Jacobs, and D. B. Robinson. 2013. Synthesis of mesoporous palladium with tunable porosity and demonstration of its thermal stability by in situ heating and environmental transmission electron microscopy. Journal of Materials Chemistry A 1 (3):602–10. doi:10.1039/C2TA00190J.
  • Chen, H., J. Zheng, P. Xu, L. Li, Y. Liu, and H. Bie. 2010. Study on real-gas equations of high pressure hydrogen. International Journal of Hydrogen Energy 35 (7):3100–4. doi:10.1016/j.ijhydene.2009.08.029.
  • Christian, M., and K.-F. Aguey-Zinsou. 2012. Core-shell strategy leading to high reversible hydrogen storage capacity for NaBH4. ACS Nano 6 (9):7739–51. doi:10.1021/nn3030018.
  • Dalai, S., S. Vijayalakshmi, P. Shrivastava, S. Sivam, and P. Sharma. 2014. Preparation and characterization of hollow glass microspheres (HGMs) for hydrogen storage using urea as a blowing agent. Microelectronic Engineering 126:65–70. doi:10.1016/j.mee.2014.06.017.
  • Demirbas, A. 2017. Future hydrogen economy and policy. Energy Sources, Part B:Economics,Planning, and Policy 12 (2):172–81. doi:10.1080/15567249.2014.950394.
  • Dresselhaus, M., and I. Thomas. 2001. Alternative energy technologies. Nature 414 (6861):332–7.
  • Faisal, M., A. Gupta, S. Shervani, K. Balani, and A. Subramaniam. 2015. Enhanced hydrogen storage in accumulative roll bonded Mg-based hybrid. International Journal of Hydrogen Energy 40 (35):11498–505. doi:10.1016/j.ijhydene.2015.03.095.
  • Gupta, A., S. Shervani, F. Amaladasse, S. Sivakumar, K. Balani, and A. Subramaniam. 2019. Enhanced reversible hydrogen storage in nickel nano hollow spheres. International Journal of Hydrogen Energy 44 (39):22032–8. doi:10.1016/j.ijhydene.2019.06.090.
  • Gupta, A., S. Shervani, M. Faisal, K. Balani, and A. Subramaniam. 2015. Hydrogen storage in Mg-Mg2Ni-Carbon hybrids. Journal of Alloys and Compounds 645:S397–S399. doi:10.1016/j.jallcom.2014.12.101.
  • Gupta, A., S. Shervani, P. Rani, S. Sivakumar, K. Balani, and A. Subramaniam. Forthcoming. Hybrid hollow structures for hydrogen storgae. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene03.273.
  • Gupta, A., S. Shervani, S. Sivakumar, K. Balani, and A. Subramaniam. 2020. Triggered nanoexplosion of Pd hollow spheres. Journal of Nanoscience and Nanotechnology 20 (3):1941–5. doi:10.1166/jnn.2020.17146.
  • Hakamada, M., H. Nakano, T. Furukawa, M. Takahashi, and M. Mabuchi. 2010. Hydrogen storage properties of nanoporous Palladium fabricated by dealloying. The Journal of Physical Chemistry C 114 (2):868–73. doi:10.1021/jp909479m.
  • He, X., J. Wang, R. Kloepsch, S. Krueger, H. Jia, H. Liu, B. Vortmann, and J. Li. 2014. Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesised by a molten salt method. Nano Research 7 (1):110–8. doi:10.1007/s12274-013-0378-7.
  • Hughes, G. 2005. Nanostructure-mediated drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine 1:22–30.
  • Idrees, F., C. Cao, F. K. Butt, M. Tahir, I. Shakir, M. Rizwan, I. Aslam, M. Tanveer, and Z. Ali. 2014. Synthesis of novel hollow microflowers (NHMF) of Nb3O7F, their optical and hydrogen storage properties. International Journal of Hydrogen Energy 39 (25):13174–9. doi:10.1016/j.ijhydene.2014.06.142.
  • Khvostikova, O., B. Assfour, G. Seifert, H. Hermann, A. Horst, and H. Ehrenberg. 2010. Novel experimental methods for assessment of hydrogen storage capacity and modelling of sorption in Cu-BTC. International Journal of Hydrogen Energy 35 (20):11042–51. doi:10.1016/j.ijhydene.2010.07.089.
  • Kishore, S., J. Nelson, J. Adair, P. Eklund. 2005. Hydrogen storage in spherical and platelet palladium nanopaticles. Journal of Alloys and Compounds 389 (1–2):234–42. doi:10.1016/j.jallcom.2004.06.105.
  • Kobayashi, H., M. Yamauchi, R. Ikeda, T. Yamamoto, S. Matsumura, and H. Kitagawa. 2018. Double enhancement of hydrogen storage capacity of Pd nanoparticles by 20 at% replacement with Ir; systematic control of hydrogen storage in Pd-M nanoparticles (M = Ir, Pt, Au). Chemical Science 9 (25):5536–40.
  • Kong, Q., W. Feng, X. Zhong, Y. Liu, and L. Lian. 2016. Hydrogen absorption/desorption properties of porous hollow palladium spheres prepared by templating method. Journal of Alloys and Compounds 664:188–92. doi:10.1016/j.jallcom.2015.12.234.
  • Koo, H., Y. Kim, Y. Lee, W. Lee, K. Kim, and N. Park. 2008. Nano-embossed hollow spherical TiO2 as bifunctional material for high efficiency dye sensitized solar cells. Advanced Materials 20 (1):195–9. doi:10.1002/adma.200700840.
  • Lian, G., X. Zhang, S. Zhang, D. Liu, D. Cui, and Q. Wang. 2012. Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and waste water treatment. Energy & Environmental Science 5 (5):7072. doi:10.1039/c2ee03240f.
  • Lou, X., Y. Wang, C. Yuan, J. Lee, and L. Archer. 2006. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Advanced Materials 18 (17):2325–9. doi:10.1002/adma.200600733.
  • Minuto, F., A. Policicchio, A. Aloise, and R. Agostino. 2015. Liquid-like hydrogen in the micropores of commercial activated carbons. International Journal of Hydrogen Energy 40 (42):14562–72. doi:10.1016/j.ijhydene.2015.07.029.
  • Mohan, V., A. Shah, J. Sheffield, and K. Martin. 2012. Design of a hydrogen community. International Journal of Hydrogen Energy 37 (2):1214–9. doi:10.1016/j.ijhydene.2011.10.039.
  • Moliner, R., M. Lazaro, and I. Suelves. 2016. Analysis of the strategies for bridging the gap towars the Hygrogen Economy. International Journal of Hydrogen Energy 41 (43):19500–8. doi:10.1016/j.ijhydene.2016.06.202.
  • Pandev, M., P. Lucchese, C. Mansilla, A. L. Duigou, B. Abrashev, and D. Vladikova. 2017. Hydrogen Economy: The future for a sustainable and green society. Bulgarian Chemical Communiations 49:84–92.
  • Prieto, G., H. Tuysuz, N. Duyckaerts, J. Knossalla, G. Wang, and F. Schuth. 2016. Hollow nano- and microstructures as catalysts. Chemical Reviews 116 (22):14056–119.
  • Robinson, D. B., M. E. Langham, S. J. Fares, M. D. Ong, B. W. Jacobs, W. M. Clift, J. K. Murton, R. P. Hjelm, and M. S. Kent. 2010. Thermally stable nanoporous palladium alloy powders by hydrogen reduction in surfactant templates. International Journal of Hydrogen Energy 35 (11):5423–33. doi:10.1016/j.ijhydene.2010.03.031.
  • Schlapbach, L., and A. Zuttel. 2001. Hydrogen-storage materials for mobile applications. Nature 414 (6861):353–8.
  • Shervani, S., P. Mukherjee, A. Gupta, G. Mishra, K. Illath, T. G. Ajithkumar, S. Sivakumar, P. Sen, K. Balani, and A. Subramaniam. 2017. Multi-mode hydrogen storage in nanocontainers. International Journal of Hydrogen Energy 42 (38):24256–62. doi:10.1016/j.ijhydene.2017.07.233.
  • Varin, R., T. Czujko, 2009. and, and Z. Wronski. Nanomaterials for solid state hydrohen storage. New York: Springer.
  • Vons, V., H. Leegwater, W. Legerstee, S. Eijt, and A. Schmidt-Ott. 2010. Hydrogen storage properties of spark generated palladium nanoparticles. International Journal of Hydrogen Energy 35 (11):5479–89. doi:10.1016/j.ijhydene.2010.02.118.
  • Wang, L., A. Rawal, and K.-F. Aguey-Zinsou. 2019. Hydrogen storage properties of nanoconfined Aluminium hydride (AlH3). Chemical Engineering Science 194:64–70. doi:10.1016/j.ces.2018.02.014.
  • Xie, L., J. Zheng, Y. Liu, Y. Li, and X. Li. 2008. Synthesis of Li2NH hollow nanosphers with superior hydrogen storage kinetics by plasma metal reaction. Chemistry of Materials 20 (1):282–6. doi:10.1021/cm071517d.
  • Yamauchi, M., R. Ikeda, H. Kitagawa, and M. Takata. 2008. Nanosize effects on hydrogen storage in palladium. The Journal of Physical Chemistry C 112 (9):3294–9. doi:10.1021/jp710447j.
  • Zielinska, B., B. Michalkiewicz, X. Chen, E. Mijowska, and R. Kalenczuk. 2016. Pd supported ordered mesoporous hollow carbon spheres (OMHCS) for hydrogen storage. Chemical Physics Letters 647:14–9. doi:10.1016/j.cplett.2016.01.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.